ترغب بنشر مسار تعليمي؟ اضغط هنا

A Note on Ordinal DFAs

187   0   0.0 ( 0 )
 نشر من قبل Stephen Bloom
 تاريخ النشر 2010
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove the following theorem. Suppose that $M$ is a trim DFA on the Boolean alphabet $0,1$. The language $L(M)$ is well-ordered by the lexicographic order $slex$ iff whenever the non sink states $q,q.0$ are in the same strong component, then $q.1$ is a sink. It is easy to see that this property is sufficient. In order to show the necessity, we analyze the behavior of a $slex$-descending sequence of words. This property is used to obtain a polynomial time algorithm to determine, given a DFA $M$, whether $L(M)$ is well-ordered by the lexicographic order. Last, we apply an argument in cite{BE,BEa} to give a proof that the least nonregular ordinal is $omega^omega $.



قيم البحث

اقرأ أيضاً

137 - Michiel de Bondt 2019
We compute all synchronizing DFAs with 7 states and synchronization length >= 29. Furthermore, we compute alphabet size ranges for maximal, minimal and semi-minimal synchronizing DFAs with up to 7 states.
122 - Yuan Gao 2010
In this paper, we consider the transition complexity of regular languages based on the incomplete deterministic finite automata. A number of results on Boolean operations have been obtained. It is shown that the transition complexity results for unio n and complementation are very different from the state complexity results for the same operations. However, for intersection, the transition complexity result is similar to that of state complexity.
66 - Michiel de Bondt 2018
This paper contains results which arose from the research which led to arXiv:1801.10436, but which did not fit in arXiv:1801.10436. So arXiv:1801.10436 contains the highlight results, but there are more results which are interesting enough to be shared.
99 - Mitsuhiro Okada 2019
The purposes of this note are the following two; we first generalize Okada-Takeutis well quasi ordinal diagram theory, utilizing the recent result of Dershowitz-Tzamerets version of tree embedding theorem with gap conditions. Second, we discuss possi ble use of such strong ordinal notation systems for the purpose of a typical traditional termination proof method for term rewriting systems, especially for second-order (pattern-matching-based) rewriting systems including a rewrite-theoretic version of Buchholzs hydra game.
This is an auxiliary note to [12]. To be precise, here we have gathered the proofs of all the statements in [12, Section 5] that happen to have points of contact with techniques recently developed in Chousionis-Pratt [5] and Chunaev [6].
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا