ترغب بنشر مسار تعليمي؟ اضغط هنا

Alignment-Dependent Ionization of N$_2$, O$_2$, and CO$_2$ in Intense Laser Fields

146   0   0.0 ( 0 )
 نشر من قبل Alejandro Saenz
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The ionization probability of N$_2$, O$_2$, and CO$_2$ in intense laser fields is studied theoretically as a function of the alignment angle by solving the time-dependent Schrodinger equation numerically assuming only the single-active-electron approximation. The results are compared to recent experimental data [D.~Pavi{v{c}}i{c} et al., Phys.,Rev.,Lett. {bf 98}, 243001 (2007)] and good agreement is found for N$_2$ and O$_2$. For CO$_2$ a possible explanation is provided for the failure of simplified single-active-electron models to reproduce the experimentally observed narrow ionization distribution. It is based on a field-induced coherent core-trapping effect.

قيم البحث

اقرأ أيضاً

The alignment dependence of the ionization behavior of H$_2$ exposed to intense ultrashort laser pulses is investigated on the basis of solutions of the full time-dependent Schrodinger equation within the fixed-nuclei and dipole approximation. The to tal ionization yields as well as the energy-resolved electron spectra have been calculated for a parallel and a perpendicular orientation of the molecular axis with respect to the polarization axis of linear polarized laser pulses. For most, but not all considered laser peak intensities the parallel aligned molecules are easier to ionize. Furthermore, it is shown that the velocity formulation of the strong-field approximation predicts a simple interference pattern for the ratio of the energy-resolved electron spectra obtained for the two orientations, but this is not confirmed by the full ab initio results.
Triple-differential cross sections for two-photon double ionization of molecular hydrogen are presented for a central photon energy of 30 eV. The calculations are based on a fully {it ab initio}, nonperturbative, approach to the time-dependent Schroe dinger equation in prolate spheroidal coordinates, discretized by a finite-element discrete-variable-representation. The wave function is propagated in time for a few femtoseconds using the short, iterative Lanczos method to study the correlated response of the two photoelectrons to short, intense laser radiation. The current results often lie in between those of Colgan {it et al} [J. Phys. B {bf 41} (2008) 121002] and Morales {it et al} [J. Phys. B {bf 41} (2009) 134013]. However, we argue that these individual predictions should not be compared directly to each other, but preferably to experimental data generated under well-defined conditions.
We study ionization dynamics of aligned diatomic molecules N$_2$ in strong elliptical laser fields experimentally and theoretically. The alignment dependence of photoelectron momentum distributions (PMDs) of N$_2$ measured in experiments is highlight ed with comparing to Ar measured synchronously. Our results show that the PMDs of N$_2$ depend strongly on the alignment of the molecule, relative to the main axis of the laser ellipse. In particular, the most-probable electron-emission angle which is often used in attosecond measurement, differs remarkably when changing the molecular alignment. We show that the interplay of two-center interference and tunneling when the electron goes through the laser-Coulomb-formed barrier, plays an important role in these phenomena. Our work gives suggestions on studying ultrafast electron motion inside aligned molecules.
Detection of nascent O($^3P_j$, $j=2,1,0$) atoms using one-photon resonant excitation to the $3s,^3S^o_1$ state at $sim 130$ nm followed by near-threshold ionization, i. e., 1 + 1 resonance enhanced multi-photon ionization (REMPI), has been investiga ted. The aim was to achieve low ion recoil, improved sensitivity, and reliable angular momentum polarization information, with an as simple as possible laser setup. An efficient 1 + 1 scheme has been found where the VUV light for the first step 1 is generated by difference frequency ($2omega_1 - omega_2$) VUV generation by four wave mixing in Kr gas, and the ionization step 1 uses 2$omega_2$ at 289 nm. The presented scheme induces 9 m/s recoil of the O$^+$ ion using a two-dye laser system, and zero recoil should be possible by generating 302 nm radiation with a third dye laser. While this approach is much more sensitive than a previous 1 + 1 scheme using 212.6 nm for the 1 step, we found that the relatively intense 289 nm radiation does not saturate the 1 step. In order to test the ability of this scheme to accurately determine branching ratios, fine structure yields, and angular distributions including polarization information, it has been applied to O$_2$ photodissociation around 130 nm with subsequent O($^3P_j$) fragment detection.
The earliest atmospheres of rocky planets originate from extensive volatile release during magma ocean epochs that occur during assembly of the planet. These establish the initial distribution of the major volatile elements between different chemical reservoirs that subsequently evolve via geological cycles. Current theoretical techniques are limited in exploring the anticipated range of compositional and thermal scenarios of early planetary evolution, even though these are of prime importance to aid astronomical inferences on the environmental context and geological history of extrasolar planets. Here, we present a coupled numerical framework that links an evolutionary, vertically-resolved model of the planetary silicate mantle with a radiative-convective model of the atmosphere. Using this method we investigate the early evolution of idealized Earth-sized rocky planets with end-member, clear-sky atmospheres dominated by either H$_2$, H$_2$O, CO$_2$, CH$_4$, CO, O$_2$, or N$_2$. We find central metrics of early planetary evolution, such as energy gradient, sequence of mantle solidification, surface pressure, or vertical stratification of the atmosphere, to be intimately controlled by the dominant volatile and outgassing history of the planet. Thermal sequences fall into three general classes with increasing cooling timescale: CO, N$_2$, and O$_2$ with minimal effect, H$_2$O, CO$_2$, and CH$_4$ with intermediate influence, and H$_2$ with several orders of magnitude increase in solidification time and atmosphere vertical stratification. Our numerical experiments exemplify the capabilities of the presented modeling framework and link the interior and atmospheric evolution of rocky exoplanets with multi-wavelength astronomical observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا