ﻻ يوجد ملخص باللغة العربية
Using a three-frequency one-dimensional kicked rotor experimentally realized with a cold atomic gas, we study the transport properties at the critical point of the metal-insulator Anderson transition. We accurately measure the time-evolution of an initially localized wavepacket and show that it displays at the critical point a scaling invariance characteristic of this second-order phase transition. The shape of the momentum distribution at the critical point is found to be in excellent agreement with the analytical form deduced from self-consistent theory of localization.
We show that quantum wavepackets exhibit a sharp macroscopic peak as they spread in the vicinity of the critical point of the Anderson transition. The peak gives a direct access to the mutifractal properties of the wavefunctions and specifically to t
We consider the orthogonality catastrophe at the Anderson Metal-Insulator transition (AMIT). The typical overlap $F$ between the ground state of a Fermi liquid and the one of the same system with an added potential impurity is found to decay at the A
Many-body localization (MBL) is an example of a dynamical phase of matter that avoids thermalization. While the MBL phase is robust to weak local perturbations, the fate of an MBL system coupled to a thermalizing quantum system that represents a heat
We present a full description of the nonergodic properties of wavefunctions on random graphs without boundary in the localized and critical regimes of the Anderson transition. We find that they are characterized by two critical localization lengths:
Distinguishing the dynamics of an Anderson insulator from a Many-Body Localized (MBL) phase is an experimentally challenging task. In this work, we propose a method based on machine learning techniques to analyze experimental snapshot data to separat