ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic and neutron spectroscopic properties of the tetrameric nickel compound $[Mo_{12}O_{28}(mu_2-OH)_9(mu_3-OH)_3{Ni(H_2O)_3}_4] $cdot$ 13H_2O$

36   0   0.0 ( 0 )
 نشر من قبل Albert Furrer
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present results of inelastic neutron scattering experiments performed for the compound Magnetic and neutron spectroscopic properties of the tetrameric nickel compound $[Mo_{12}O_{28}(mu_2-OH)_9(mu_3-OH)_3{Ni(H_2O)_3}_4] $cdot$ 13H_2O$, which is a molecular magnet with antiferromagnetically coupled Ni2+ ions forming nearly ideal tetrahedra in a diamagnetic molybdate matrix. The neutron spectroscopic data are analyzed together with high-field magnetization data (taken from the literature) which exhibit four steps at non-equidistant field intervals. The experimental data can be excellently described by antiferromagnetic Heisenberg-type exchange interactions as well as an axial single-ion anisotropy within a distorted tetrahedron of Ni2+ ions characterized by X-ray single-crystal diffraction. Our analysis contrasts to recently proposed models which are based on the existence of extremely large biquadratic (and three-ion) exchange interactions and/or on a strong field dependence of the Heisenberg coupling parameters.

قيم البحث

اقرأ أيضاً

84 - W. Sun , T. Arh , M. Gomilv{s}ek 2021
Experimental studies of high-purity kagome-lattice antiferromagnets (KAFM) are of great importance in attempting to better understand the predicted enigmatic quantum spin-liquid ground state of the KAFM model. However, realizations of this model can rarely evade magnetic ordering at low temperatures due to various perturbations to its dominant isotropic exchange interactions. Such a situation is for example encountered due to sizable Dzyaloshinskii-Moriya magnetic anisotropy in YCu$_3$(OH)$_6$Cl$_3$, which stands out from other KAFM materials by its perfect crystal structure. We find evidence of magnetic ordering also in the distorted sibling compound Y$_3$Cu$_9$(OH)$_{18}$[Cl$_8$(OH)], which has recently been proposed to feature a spin-liquid ground state arising from a spatially anisotropic kagome lattice. Our findings are based on a combination of bulk susceptibility, specific heat, and magnetic torque measurements that disclose a Neel transition temperature of $T_N=11$~K in this material, which might feature a coexistence of magnetic order and persistent spin dynamics as previously found in YCu$_3$(OH)$_6$Cl$_3$. Contrary to previous studies of single crystals and powders containing impurity inclusions, we use high-purity single crystals of Y$_3$Cu$_9$(OH)$_{18}$[Cl$_8$(OH)] grown via an optimized hydrothermal synthesis route that minimizes such inclusions. This study thus demonstrates that the lack of magnetic ordering in less pure samples of the investigated compound does not originate from the reduced symmetry of spin lattice but is instead of extrinsic origin.
Here we present neutron diffraction results on the mineral azurite. We have found that the crystal structure of azurite can be described in the space group $P2_1$ which is the next lower symmetric group of $P2_1/c$ as found in earlier work. This smal l change in symmetry does not greatly influence the lattice parameters or atomic fractional coordinates which are presented here for single crystal diffraction refinements. The ordered magnetic moment structure of this material has been determined and is comprised of two inequivalent magnetic moments on copper sites of magnitude 0.68(1) and 0.25(1) $mu_{B}$. This result is discussed in terms of the anisotropic exchange and Dzyaloshinskii-Moriya interactions. It is found that the system is likely governed by one-dimensional behaviour despite the long-range ordered ground state. We also highlight the significance of strain in this material which is strongly coupled to the magnetism.
We present a comprehensive macroscopic thermodynamic study of the quasi-one-dimensional (1D) $s = tfrac{1}{2}$ frustrated spin-chain system linarite. Susceptibility, magnetization, specific heat, magnetocaloric effect, magnetostriction, and thermal-e xpansion measurements were performed to characterize the magnetic phase diagram. In particular, for magnetic fields along the b axis five different magnetic regions have been detected, some of them exhibiting short-range-order effects. The experimental magnetic entropy and magnetization are compared to a theoretical modelling of these quantities using DMRG and TMRG approaches. Within the framework of a purely 1D isotropic model Hamiltonian, only a qualitative agreement between theory and the experimental data can be achieved. Instead, it is demonstrated that a significant symmetric anisotropic exchange of about 10% is necessary to account for the basic experimental observations, including the 3D saturation field, and which in turn might stabilize a triatic (three-magnon) multipolar phase.
In this joint experimental and theoretical work magnetic properties of the Cu$^{2+}$ mineral szenicsite Cu$_3$(MoO$_4$)(OH)$_4$ are investigated. This compound features isolated triple chains in its crystal structure, where the central chain involves an edge-sharing geometry of the CuO$_4$ plaquettes, while the two side chains feature a corner-sharing zig-zag geometry. The magnetism of the side chains can be described in terms of antiferromagnetic dimers with a coupling larger than 200 K. The central chain was found to be a realization of the frustrated antiferromagnetic $J_1$-$J_2$ chain model with $J_1simeq 68$ K and a sizable second-neighbor coupling $J_2$. The central and side chains are nearly decoupled owing to interchain frustration. Therefore, the low-temperature behavior of szenicsite should be entirely determined by the physics of the central frustrated $J_1$-$J_2$ chain. Our heat-capacity measurements reveal an accumulation of entropy at low temperatures and suggest a proximity of the system to the Majumdar-Ghosh point of the antiferromagnetic $J_1$-$J_2$ spin chain, $J_2/J_1=0.5$.
Strongly correlated electrons in layered perovskite structures have been the birthplace of high-temperature superconductivity, spin liquid, and quantum criticality. Specifically, the cuprate materials with layered structures made of corner sharing sq uare planar CuO$_4$ units have been intensely studied due to their Mott insulating grounds state which leads to high-temperature superconductivity upon doping. Identifying new compounds with similar lattice and electronic structures has become a challenge in solid state chemistry. Here, we report the hydrothermal crystal growth of a new copper tellurite sulfate Cu$_3$(TeO$_4$)(SO$_4$)$cdot$H$_2$O, a promising alternative to layered perovskites. The orthorhombic phase (space group $Pnma$) is made of corrugated layers of corner-sharing CuO$_4$ square-planar units that are edge-shared with TeO$_4$ units. The layers are linked by slabs of corner-sharing CuO$_4$ and SO$_4$. Using both the bond valence sum analysis and magnetization data, we find purely Cu$^{2+}$ ions within the layers, but a mixed valence of Cu$^{2+}$/Cu${^+}$ between the layers. Cu$_3$(TeO$_4$)(SO$_4$)$cdot$H$_2$O undergoes an antiferromagnetic transition at $T_N$=67 K marked by a peak in the magnetic susceptibility. Upon further cooling, a spin-canting transition occurs at $T^{star}$=12 K evidenced by a kink in the heat capacity. The spin-canting transition is explained based on a $J_1$-$J_2$ model of magnetic interactions, which is consistent with the slightly different in-plane super-exchange paths. We present Cu$_3$(TeO$_4$)(SO$_4$)$cdot$H$_2$O as a promising platform for the future doping and strain experiments that could tune the Mott insulating ground state into superconducting or spin liquid states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا