ترغب بنشر مسار تعليمي؟ اضغط هنا

Stochastic backgrounds of gravitational waves from extragalactic sources

71   0   0.0 ( 0 )
 نشر من قبل Raffaella Schneider
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Astrophysical sources emit gravitational waves in a large variety of processes occurred since the beginning of star and galaxy formation. These waves permeate our high redshift Universe, and form a background which is the result of the superposition of different components, each associated to a specific astrophysical process. Each component has different spectral properties and features that it is important to investigate in view of a possible, future detection. In this contribution, we will review recent theoretical predictions for backgrounds produced by extragalactic sources and discuss their detectability with current and future gravitational wave observatories.

قيم البحث

اقرأ أيضاً

Several mechanisms exist for generating a stochastic background of gravitational waves in the period following inflation. These mechanisms are generally classical in nature, with the gravitational waves being produced from inhomogeneities in the fiel ds that populate the early universe and not quantum fluctuations. The resulting stochastic background could be accessible to next generation gravitational wave detectors. We develop a framework for computing such a background analytically and computationally. As an application of our framework, we consider the stochastic background of gravitational waves generated in a simple model of preheating.
95 - James B. Dent 2013
It has been shown that a cosmological background with an anisotropic stress tensor, appropriate for a free streaming thermal neutrino background, can damp primordial gravitational waves after they enter the horizon, and can thus affect the CMB B-mode polarization signature due to such tensor modes. Here we generalize this result, and examine the sensitivity of this effect to non-zero neutrino masses, extra neutrino species, and also a possible relativistic background of axions from axion strings. In particular, additional neutrinos with cosmologically interesting neutrino masses at the O(1) eV level will noticeably reduce damping compared to massless neutrinos for gravitational wave modes with $ktau_0 approx 100-200$, where $tau_0 approx 2/H_0$ and $H_0$ is the present Hubble parameter, while an axion background would produce a phase-dependent damping distinct from that produced by neutrinos.
Cosmological phase transitions in the primordial universe can produce anisotropic stochastic gravitational wave backgrounds (GWB), similar to the cosmic microwave background (CMB). For adiabatic perturbations, the fluctuations in GWB follow those in the CMB, but if primordial fluctuations carry an isocurvature component, this need no longer be true. It is shown that in non-minimal inflationary and reheating settings, primordial isocurvature can survive in GWB and exhibit significant non-Gaussianity (NG) in contrast to the CMB, while obeying current observational bounds. While probing such NG GWB is at best a marginal possibility at LISA, there is much greater scope at future proposed detectors such as DECIGO and BBO. It is even possible that the first observations of inflation-era NG could be made with gravitational wave detectors as opposed to the CMB or Large-Scale Structure surveys.
A MHz gravitational wave search for harmonic sources was conducted using a 704-hr dataset obtained from the Holometer, a pair of 40-meter power recycled Michelson interferometers. Our search was designed to look for cosmic string loops and eccentric black hole binaries in an entirely unexplored frequency range from 1 to 25 MHz. The measured cross-spectral density between both interferometers was used to perform four different searches. First, we search to identify any fundamental frequencies bins that have excess power above 5$sigma$. Second, we reduce the per-bin threshold on any individual frequency bin by employing that a fundamental frequency and its harmonics all collectively lie above a threshold. We vary the number of harmonics searched over from $n= 4$ up to $n=23$. Third, we perform an agnostic approach to identify harmonic candidates that may have a single contaminated frequency bin or follow a power-law dependence. Lastly, we expand on the agnostic approach for individual candidates and search for a potential underlying population of harmonic sources. Each method was tested on the interferometer dataset, as well as a dark noise, photon shot-noise-limited, and simulated Gaussian-noise datasets. We conclude that these four different search methods did not find any candidate frequencies that would be consistent with harmonic sources. This work presents a new way of searching for gravitational wave candidates, which allowed us to survey a previously unexplored frequency range.
In a general metric theory of gravitation in four dimensions, six polarizations of a gravitational wave are allowed: two scalar and two vector modes, in addition to two tensor modes in general relativity. Such additional polarization modes appear due to additional degrees of freedom in modified theories of gravitation or theories with extra dimensions. Thus, observations of gravitational waves can be utilized to constrain the extended models of gravitation. In this paper, we investigate detectability of additional polarization modes of gravitational waves, particularly focusing on a stochastic gravitational-wave background, with laser-interferometric detectors on the Earth. We found that multiple detectors can separate the mixture of polarization modes in detector outputs, and that they have almost the same sensitivity to each polarization mode of stochastic gravitational-wave background.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا