ترغب بنشر مسار تعليمي؟ اضغط هنا

Our Milky Way as a Pure-Disk Galaxy -- A Challenge for Galaxy Formation

135   0   0.0 ( 0 )
 نشر من قبل Juntai Shen
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Juntai Shen




اسأل ChatGPT حول البحث

Bulges are commonly believed to form in the dynamical violence of galaxy collisions and mergers. Here we model the stellar kinematics of the Bulge Radial Velocity Assay (BRAVA), and find no sign that the Milky Way contains a classical bulge formed by scrambling pre-existing disks of stars in major mergers. Rather, the bulge appears to be a bar, seen somewhat end-on, as hinted from its asymmetric boxy shape. We construct a simple but realistic N-body model of the Galaxy that self-consistently develops a bar. The bar immediately buckles and thickens in the vertical direction. As seen from the Sun, the result resembles the boxy bulge of our Galaxy. The model fits the BRAVA stellar kinematic data covering the whole bulge strikingly well with no need for a merger-made classical bulge. The bar in our best fit model has a half-length of ~ 4kpc and extends 20 degrees from the Sun-Galactic Center line. We use the new kinematic constraints to show that any classical bulge contribution cannot be larger than ~ 8% of the disk mass. Thus the Galactic bulge is a part of the disk and not a separate component made in a prior merger. Giant, pure-disk galaxies like our own present a major challenge to the standard picture in which galaxy formation is dominated by hierarchical clustering and galaxy mergers.

قيم البحث

اقرأ أيضاً

91 - L. G. Hou 2009
The spiral structure of our Milky Way Galaxy is not yet known. HII regions and giant molecular clouds are the most prominent spiral tracers. We collected the spiral tracer data of our Milky Way from the literature, namely, HII regions and giant molec ular clouds (GMCs). With weighting factors based on the excitation parameters of HII regions or the masses of GMCs, we fitted the distribution of these tracers with models of two, three, four spiral-arms or polynomial spiral arms. The distances of tracers, if not available from stellar or direct measurements, were estimated kinetically from the standard rotation curve of Brand & Blitz (1993) with $R_0$=8.5 kpc, and $Theta_0$=220 km s$^{-1}$ or the newly fitted rotation curves with $R_0$=8.0 kpc and $Theta_0$=220 km s$^{-1}$ or $R_0$=8.4 kpc and $Theta_0$=254 km s$^{-1}$. We found that the two-arm logarithmic model cannot fit the data in many regions. The three- and the four-arm logarithmic models are able to connect most tracers. However, at least two observed tangential directions cannot be matched by the three- or four-arm model. We composed a polynomial spiral arm model, which can not only fit the tracer distribution but also match observed tangential directions. Using new rotation curves with $R_0$=8.0 kpc and $Theta_0$=220 km s$^{-1}$ and $R_0$=8.4 kpc and $Theta_0$=254 km s$^{-1}$ for the estimation of kinematic distances, we found that the distribution of HII regions and GMCs can fit the models well, although the results do not change significantly compared to the parameters with the standard $R_0$ and $Theta_0$.
102 - David G. Turner 2013
The nature of our Milky Way Galaxy is reexamined from an eclectic point of view. Evidence for a central bar, for example, is not reflected in the distribution of RR Lyrae variables in the central bulge [4,5], and it is not clear if either a 2-armed o r 4-armed spiral pattern is appropriate for the spiral arms. Radial velocity mapping of the Galaxy using radio H I, H II, or CO observations is compromised by the assumptions adopted for simple Galactic rotation. The Suns local standard of rest (LSR) velocity is $sim 14$ km s$^{-1}$ rather than 20 km s$^{-1}$, the local circular velocity is $251 pm 9$ km s$^{-1}$ rather than 220 km s$^{-1}$, and young groups of stars exhibit a 10--20 km s$^{-1}$ kick relative to what is expected from Galactic rotation. By implication, the same may be true for star-forming gas clouds affected by the Galaxys spiral density wave, raising concerns about their use for mapping spiral arms. Proper motion data in conjunction with the newly-estimated velocity components for the Suns motion imply a distance to the Galactic centre of $R_0=8.34pm0.27$ kpc, consistent with recent estimates which average $8.24pm0.09$ kpc. A cosinusoidal Galactic potential is not ruled out by observations of open star clusters. The planetary nebula cluster Bica 6, for example, has a near-escape orbit for a Newtonian potential, but a near-normal orbit in a cosinusoidal potential field. The nearby cluster Collinder 464 also displays unusually large tidal effects consistent with those expected for a cosinusoidal potential. A standard Newtonian version of the Virial Theorem for star clusters yields very reasonable masses ($sim 3 times 10^{11}M_{odot}$ and $sim 4 times 10^{11}M_{odot}$) for the Milky Way and M31 subgroups of the Local Group, respectively. A cosinusoidal relation should yield identical results.
We compare the star-formation history and dynamics of the Milky Way (MW) with the properties of distant disk galaxies. During the first ~4 Gyr of its evolution, the MW formed stars with a high star-formation intensity (SFI), Sigma_SFR~0.6 Msun/yr/kpc 2 and as a result, generated outflows and high turbulence in its interstellar medium. This intense phase of star formation corresponds to the formation of the thick disk. The formation of the thick disk is a crucial phase which enables the MW to have formed approximately half of its total stellar mass by z~1 which is similar to MW progenitor galaxies selected by abundance matching. This agreement suggests that the formation of the thick disk may be a generic evolutionary phase in disk galaxies. Using a simple energy injection-kinetic energy relationship between the 1-D velocity dispersion and SFI, we can reproduce the average perpendicular dispersion in stellar velocities of the MW with age. This relationship, its inferred evolution, and required efficiency are consistent with observations of galaxies from z~0-3. The high turbulence generated by intense star formation naturally resulted in a thick disk, a chemically well-mixed ISM, and is the mechanism that links the evolution of MW to the observed characteristics of distant disk galaxies.
80 - Yuri N.Efremov 2010
We consider the possible pattern of the overall spiral structure of the Galaxy, using data on the distribution of neutral (atomic), molecular, and ionized hydrogen, on the base of the hypothesis of the spiral structure being symmetric, i.e. the assum ption that spiral arms are translated into each other for a rotation around the galactic center by 180{deg} (a two-arm pattern) or by 90{deg} (a four-arm pattern). We demonstrate that, for the inner region, the observations are best represented with a four-arm scheme of the spiral pattern, associated with all-Galaxy spiral density waves. The basic position is that of the Carina arm, reliably determined from distances to HII regions and from HI and H2 radial velocities. This pattern is continued in the quadrants III and IV with weak outer HI arms; from their morphology, the Galaxy should be considered an asymmetric multi-arm spiral. The kneed shape of the outer arms that consist of straight segments can indicate that these arms are transient formations that appeared due to a gravitational instability in the gas disk. The distances between HI superclouds in the two arms that are the brightest in neutral hydrogen, the Carina arm and the Cygnus (Outer) arm, concentrate to two values, permitting to assume the presence of a regular magnetic field in these arms.
We report new observations of the galaxy UGC8802 obtained through GASS, the GALEX Arecibo SDSS Survey, which show this galaxy to be in a remarkable evolutionary state. UGC8802 (GASS35981) is a disk galaxy with stellar mass M*=2x10^10 Msolar which app ears to contain an additional 2.1x10^10 Msolar of HI gas. New millimeter observations with the IRAM 30m telescope indicate a molecular gas mass only a tenth this large. Using deep long-slit spectroscopy, we examine the spatially resolved star formation rate and metallicity profiles of GASS35981 for clues to its history. We find that the star formation surface density in this galaxy is low (Sigma_SFR=0.003 Msolar/yr/kpc^2) and that the star formation is spread remarkably evenly across the galaxy. The low molecular gas masses measured in our three IRAM pointings are largely consistent with the total star formation measured within the same apertures. Our MMT long-slit spectrum reveals a sharp drop in metallicity in the outer disk of GASS35981. The ratio of current star formation rate to existing stellar mass surface density in the outer disk is extremely high, implying that all the stars must have formed within the past ~1Gyr. At current star formation rates, however, GASS35981 will not consume its HI reservoir for another 5-7 Gyr. Despite its exceptionally large gas fraction for a galaxy this massive, GASS35981 has a regular rotation curve and exhibits no sign of a recent interaction or merger. We speculate that GASS35981 may have acquired its gas directly from the inter-galactic medium, and that it and other similar galaxies identified in the GASS survey may provide rare local glimpses of gas accretion processes that were more common during the prime epoch of disk galaxy formation at z~1.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا