ﻻ يوجد ملخص باللغة العربية
We investigate the velocity dispersion of Pal 14, an outer Milky-Way globular cluster at Galactocentric distance of 71 kpc with a very low stellar density (central density 0.1-0.2 Msun/pc^3). Due to this low stellar density the binary population of Pal 14 is likely to be close to the primordial binary population. Artificial clusters are generated with the observed properties of Pal 14 and the velocity dispersion within these clusters is measured as Jordi et al. (2009) have done with 17 observed stars of Pal 14. We discuss the effect of the binary population on these measurements and find that the small velocity dispersion of 0.38 km/s which has been found by Jordi et al. (2009) would imply a binary fraction of less than 0.1, even though from the stellar density of Pal 14 we would expect a binary fraction of more than 0.5. We also discuss the effect of mass segregation on the velocity dispersion as possible explanation for this discrepancy, but find that it would increase the velocity dispersion further. Thus, either Pal 14 has a very unusual stellar population and its birth process was significantly different than we see in todays star forming regions, or the binary population is regular and we would have to correct the observed 0.38 km/s for binarity. In this case the true velocity dispersion of Pal 14 would be much smaller than this value and the cluster would have to be considered as kinematically frigid, thereby possibly posing a challenge for Newtonian dynamics but in the opposite sense to MOND.
We present 21-cm observations of four Galactic globular clusters, as part of the on-going GALFA-HI Survey at Arecibo. We discovered a peculiar HI cloud in the vicinity of the distant (109 kpc) cluster Pal 4, and discuss its properties and likelihood
We report the detection of a pair of degree-long tidal tails associated with the globular cluster Palomar 14, using images obtained at the CFHT. We reveal a power-law departure from a King profile at large distances to the cluster center. The density
We present evidence for mass segregation in the outer-halo globular cluster Palomar 14, which is intuitively unexpected since its present-day two-body relaxation time significantly exceeds the Hubble time. Based on archival Hubble Space Telescope ima
We present an analysis of the radial dependence of the stellar mass function in the diffuse outer-halo globular cluster Palomar 14. Using archival HST/WFPC2 data of the clusters central 39 pc (corresponding to ~0.85*r_h) we find that the mass functio
We have derived the absolute proper motion (PM) of the globular cluster M55 using a large set of CCD images collected with the du Pont telescope between 1997 and 2008. We find (PM_RA*cos(DEC), PM_DEC) = (-3.31 +/- 0.10, -9.14 +/- 0.15) mas/yr relativ