ترغب بنشر مسار تعليمي؟ اضغط هنا

Positive isotopies of Legendrian submanifolds and applications

190   0   0.0 ( 0 )
 نشر من قبل Emmanuel Ferrand
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English
 تأليف Vincent Colin




اسأل ChatGPT حول البحث

We show that there is no positive loop inside the component of a fiber in the space of Legendrian embeddings in the contact manifold $ST^*M$, provided that the universal cover of $M$ is $RM^n$. We consider some related results in the space of one-jets of functions on a compact manifold. We give an application to the positive isotopies in homogeneous neighborhoods of surfaces in a tight contact 3-manifold.



قيم البحث

اقرأ أيضاً

63 - Sylvain Courte 2015
In any contact manifold of dimension $2n-1geq 11$, we construct examples of closed legendrian submanifolds which are not diffeomorphic but whose lagrangian cylinders in the symplectization are hamiltonian isotopic.
We prove that the number of Reeb chords between a Legendrian submanifold and its contact Hamiltonian push-off is at least the sum of the $mathbb{Z}_2$-Betti numbers of the submanifold, provided that the contact isotopy is sufficiently small when comp ared to the smallest Reeb chord on the Legendrian. Moreover, the established invariance enables us to use two different contact forms: one for the count of Reeb chords and another for the measure of the smallest length, under the assumption that there is a suitable symplectic cobordism from the latter to the former. The size of the contact isotopy is measured in terms of the oscillation of the contact Hamiltonian, together with the maximal factor by which the contact form is shrunk during the isotopy. The main tool used is a Mayer--Vietoris sequence for Lagrangian Floer homology, obtained by neck-stretching and splashing.
We relate the machinery of persistence modules to the Legendrian contact homology theory and to Poisson bracket invariants, and use it to show the existence of connecting trajectories of contact and symplectic Hamiltonian flows.
We prove that for regular contact forms there exists a bijective correspondence between the $C^0$ limits of sequences of smooth strictly contact isotopies and the limits with respect to the contact distance of their corresponding Hamiltonians.
An exact Lagrangian submanifold $L$ in the symplectization of standard contact $(2n-1)$-space with Legendrian boundary $Sigma$ can be glued to itself along $Sigma$. This gives a Legendrian embedding $Lambda(L,L)$ of the double of $L$ into contact $(2 n+1)$-space. We show that the Legendrian isotopy class of $Lambda(L,L)$ is determined by formal data: the manifold $L$ together with a trivialization of its complexified tangent bundle. In particular, if $L$ is a disk then $Lambda(L,L)$ is the Legendrian unknot.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا