ترغب بنشر مسار تعليمي؟ اضغط هنا

An approach for both the computation of coarse-scale steady state solutions and initialization on a slow manifold

51   0   0.0 ( 0 )
 نشر من قبل Benjamin Sonday
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a simple technique for the computation of coarse-scale steady states of dynamical systems with time scale separation in the form of a wrapper around a fine-scale simulator. We discuss how this approach alleviates certain problems encountered by comparable existing approaches, and illustrate its use by computing coarse-scale steady states of a lattice Boltzmann fine scale code. Interestingly, in the same context of multiple time scale problems, the approach can be slightly modified to provide initial conditions (on the slow manifold) with prescribed coarse-scale observables. The approach is based on appropriately designed short bursts of the fine-scale simulator whose results are used to track changes in the coarse variables of interest, a core component of the equation-free framework.

قيم البحث

اقرأ أيضاً

38 - S. M. Cox 2003
Atmospheric dynamics span a range of time-scales. The projection of measured data to a slow manifold, ${cal M}$, removes fast gravity waves from the initial state for numerical simulations of the atmosphere. We explore further the slow manifold for a simple atmospheric model introduced by Lorenz and anticipate that our results will relevant to the vastly more detailed dynamics of atmospheres and oceans. Within the dynamics of the Lorenz model, we make clear the relation between a slow manifold $cal M$ and the ``slowest invariant manifold ({SIM}), which was constructed by Lorenz in order to avoid the divergence of approximation schemes for $cal M$. These manifolds are shown to be identical to within exponentially small terms, and so the {SIM} in fact shares the asymptotic nature of $cal M$. We also investigate the issue of balancing initial data in order to remove gravity waves. This is a question of how to compute an ``initialized point on $cal M$ whose subsequent evolution matches that from the measured initial data that in general lie off $cal M$. We propose a choice based on the intuitive idea that the initialization procedure should not significantly alter the forecast. Numerical results demonstrate the utility of our initialization scheme. The normal form for Lorenz atmospheric model shows clearly how to separate the dynamics of the different atmospheric waves. However, its construction demonstrates that {em any} initialization procedure must eventually alter the forecast--the time-scale of the divergence between the initialized and the uninitialized solutions is inevitable and is inversely proportional to the square of initial level of gravity-wave activity.
An implicit multiscale method with multiple macroscopic prediction for steady state solutions of gas flow in all flow regimes is presented. The method is based on the finite volume discrete velocity method (DVM) framework. At the cell interface a mul tiscale flux with a construction similar to discrete unified gas-kinetic scheme (DUGKS) is adopted. The idea of the macroscopic variable prediction is further developed and a multiple prediction structure is formed. A prediction scheme is constructed to give a predicted macroscopic variable based on the macroscopic residual, and the convergence is accelerated greatly in the continuum flow regime. Test cases show the present method is one order of magnitude faster than the previous implicit multiscale scheme in the continuum flow regime.
The mass flow rate of Poiseuille flow of rarefied gas through long ducts of two-dimensional cross-sections with arbitrary shape are critical in the pore-network modeling of gas transport in porous media. In this paper, for the first time, the high-or der hybridizable discontinuous Galerkin (HDG) method is used to find the steady-state solution of the linearized Bhatnagar-Gross-Krook equation on two-dimensional triangular meshes. The velocity distribution function and its traces are approximated in the piecewise polynomial space (of degree up to 4) on the triangular meshes and the mesh skeletons, respectively. By employing a numerical flux that is derived from the first-order upwind scheme and imposing its continuity on the mesh skeletons, global systems for unknown traces are obtained with a few coupled degrees of freedom. To achieve fast convergence to the steady-state solution, a diffusion-type equation for flow velocity that is asymptotic-preserving into the fluid dynamic limit is solved by the HDG simultaneously, on the same meshes. The proposed HDG-synthetic iterative scheme is proved to be accurate and efficient. Specifically, for flows in the near-continuum regime, numerical simulations have shown that, to achieve the same level of accuracy, our scheme could be faster than the conventional iterative scheme by two orders of magnitude, while it is faster than the synthetic iterative scheme based on the finite difference discretization in the spatial space by one order of magnitude. The HDG-synthetic iterative scheme is ready to be extended to simulate rarefied gas mixtures and the Boltzmann collision operator.
The large time and length scales and, not least, the vast number of particles involved in industrial-scale simulations inflate the computational costs of the Discrete Element Method (DEM) excessively. Coarse grain models can help to lower the computa tional demands significantly. However, for effects that intrinsically depend on particle size, coarse grain models fail to correctly predict the behaviour of the granular system. To solve this problem we have developed a new technique based on the efficient combination of fine-scale and coarse grain DEM models. The method is designed to capture the details of the granular system in spatially confined sub-regions while keeping the computational benefits of the coarse grain model where a lower resolution is sufficient. To this end, our method establishes two-way coupling between resolved and coarse grain parts of the system by volumetric passing of boundary conditions. Even more, multiple levels of coarse-graining may be combined to achieve an optimal balance between accuracy and speedup. This approach enables us to reach large time and length scales while retaining specifics of crucial regions. Furthermore, the presented model can be extended to coupled CFD-DEM simulations, where the resolution of the CFD mesh may be changed adaptively as well.
The linear noise approximation models the random fluctuations from the mean field model of a chemical reaction that unfolds near the thermodynamic limit. Specifically, the fluctuations obey a linear Langevin equation up to order $Omega^{-1/2}$, where $Omega$ is the size of the chemical system (usually the volume). Under the presence of disparate timescales, the linear noise approximation admits a quasi-steady-state reduction referred to as the slow scale linear noise approximation. However, the slow scale linear approximation has only been derived for fast/slow systems that are in Tikhonov standard form. In this work, we derive the slow scale linear noise approximation directly from Fenichel theory, without the need for a priori scaling and dimensional analysis. In so doing, we can apply for the first time the slow scale linear noise approximation to fast/slow systems that are not of standard form. This is important, because often times algorithms are only computationally expensive in parameter ranges where the system is singularly perturbed, but not in standard form. We also comment on the breakdown of the slow scale linear noise approximation near dynamic bifurcation points -- a topic that has remained absent in the chemical kinetics literature, despite the presence of bifurcations in simple biochemical reactions, such the Michaelis--Menten reaction mechanism.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا