ﻻ يوجد ملخص باللغة العربية
Synchrotron X-ray diffraction investigations of two single crystals of Na_xCoO_2 from different batches with composition x = 0.525-0.530 reveal homogeneous incommensurate sodium ordering with propagation vector (0.53 0.53 0) at room-temperature. The incommensurate (qq0) superstructure exists between 220 K and 430 K. The value of q varies between q = 0.514 and 0.529, showing a broad plateau at the latter value between 260 K and 360 K. On cooling, unusual reversible phase segregation into two volume fractions is observed. Below 220 K, one volume fraction shows the well-known commensurate orthorhombic x = 0.50 superstructure, while a second volume fraction with x = 0.55 exhibits another commensurate superstructure, presumably with a 6a x 6a x c hexagonal supercell. We argue that the commensurate-to-incommensurate transition is an intrinsic feature of samples with Na concentrations x = 0.5 + d with d ~ 0.03.
We systematically study Raman spectroscopy of cleaved Na$_x$CoO$_2$ single crystals with 0.37 $leq$ x $leq$ 0.80. The Raman shift of A$_{1g}$ mode is found to be linearly dependent on Na content, while the Raman shift of E$_{1g}$ mode has an abnormal
In this study, we synthesized single crystals of Na$_{x}$CoO$_{2}$ with $xsim0.8$ using the optical floating zone technique. A thorough electrochemical treatment of the samples permitted us to control the de-intercalation of Na to obtain single cryst
We report the discovery of a first-order phase transition at around 125 K in NbCrP, which is a nonsymmorphic crystal with Pnma space group. From the resistivity, magnetic susceptibility, and nuclear magnetic resonance measurements using the crystals
Neutron powder diffraction measurements, combined with magnetization and resistivity data, have been carried out in the doped perovskite La$_{1-x}$Ca$_x$MnO$_3$ ($x=0.47$, 0.50, and 0.53) to elucidate the structural, magnetic, and electronic properti
In this paper we address many of the fundamental open questions regarding the glassy behavior of the magnetic/electronic phase segregated state in rare earth perovskites. In particular, magnetic relaxation experiments support that the collective effe