ﻻ يوجد ملخص باللغة العربية
The solution-space structure of the 3-Satisfiability Problem (3-SAT) is studied as a function of the control parameter alpha (ratio of number of clauses to the number of variables) using numerical simulations. For this purpose, one has to sample the solution space with uniform weight. It is shown here that standard stochastic local-search (SLS) algorithms like ASAT and MCMCMC (also known as parallel tempering) exhibit a sampling bias. Nevertheless, unbiased samples of solutions can be obtained using the ballistic-networking approach, which is introduced here. It is a generalization of ballistic search methods and yields also a cluster structure of the solution space. As application, solutions of 3-SAT instances are generated using ASAT plus ballistic networking. The numerical results are compatible with a previous analytic prediction of a simple solution-space structure for small values of alpha and a transition to a clustered phase at alpha_c ~ 3.86, where the solution space breaks up into several non-negligible clusters. Furthermore, in the thermodynamic limit there are, for values of alpha close to the SATUNSAT transition alpha_s ~ 4.267, always clusters without any frozen variables. This may explain why some SLS algorithms are able to solve very large 3-SAT instances close to the SAT-UNSAT transition.
We study numerically the cluster structure of random ensembles of two NP-hard optimization problems originating in computational complexity, the vertex-cover problem and the number partitioning problem. We use branch-and-bound type algorithms to obta
Boolean satisfiability is a propositional logic problem of interest in multiple fields, e.g., physics, mathematics, and computer science. Beyond a field of research, instances of the SAT problem, as it is known, require efficient solution methods in
We study the quantum version of the random $K$-Satisfiability problem in the presence of the external magnetic field $Gamma$ applied in the transverse direction. We derive the replica-symmetric free energy functional within static approximation and t
We study the set of solutions of random k-satisfiability formulae through the cavity method. It is known that, for an interval of the clause-to-variables ratio, this decomposes into an exponential number of pure states (clusters). We refine substanti
We consider a weak adversarial network approach to numerically solve a class of inverse problems, including electrical impedance tomography and dynamic electrical impedance tomography problems. We leverage the weak formulation of PDE in the given inv