ﻻ يوجد ملخص باللغة العربية
Electron scattering off the first excited 0+ state in 12C (the Hoyle state) has been performed at low momentum transfers at the S-DALINAC. The new data together with a novel model-independent analysis of the world data set covering a wide momentum transfer range result in a highly improved transition charge density from which a pair decay width Gamma_pi = (62.3 +- 2.0) micro-eV of the Hoyle state was extracted reducing the uncertainty of the literature values by more than a factor of three. A precise knowledge of Gamma_pi is mandatory for quantitative studies of some key issues in the modeling of supernovae and of asymptotic giant branch stars, the most likely site of the slow-neutron nucleosynthesis process.
The cascading 3.21 MeV and 4.44 MeV electric quadrupole transitions have been observed from the Hoyle state at 7.65 MeV excitation energy in $^{12}$C, excited by the $^{12}$C(p,p$^{prime}$) reaction at 10.7 MeV proton energy. From the proton-$gamma$-
The decay path of the Hoyle state in $^{12}$C ($E_x=7.654textrm{MeV}$) has been studied with the $^{14}textrm{N}(textrm{d},alpha_2)^{12}textrm{C}(7.654)$ reaction induced at $10.5textrm{MeV}$. High resolution invariant mass spectroscopy techniques ha
We use a sequential $R$-matrix model to describe the breakup of the Hoyle state into three $alpha$ particles via the ground state of $^8mathrm{Be}$. It is shown that even in a sequential picture, features resembling a direct breakup branch appear in
Stellar carbon synthesis occurs exclusively via the $3alpha$ process, in which three $alpha$ particles fuse to form $^{12}$C in the excited Hoyle state, followed by electromagnetic decay to the ground state. The Hoyle state is above the $alpha$ thres
Background: The structure of the Hoyle state, a highly $alpha$-clustered state at 7.65 MeV in $^{12}mathrm{C}$, has long been the subject of debate. Understanding if the system comprises of three weakly-interacting $alpha$-particles in the 0s orbital