ﻻ يوجد ملخص باللغة العربية
The light echo systems of historical supernovae in the Milky Way and local group galaxies provide an unprecedented opportunity to reveal the effects of asymmetry on observables, particularly optical spectra. Scattering dust at different locations on the light echo ellipsoid witnesses the supernova from different perspectives and the light consequently scattered towards Earth preserves the shape of line profile variations introduced by asymmetries in the supernova photosphere. However, the interpretation of supernova light echo spectra to date has not involved a detailed consideration of the effects of outburst duration and geometrical scattering modifications due to finite scattering dust filament dimension, inclination, and image point-spread function and spectrograph slit width. In this paper, we explore the implications of these factors and present a framework for future resolved supernova light echo spectra interpretation, and test it against Cas A and SN 1987A light echo spectra. We conclude that the full modeling of the dimensions and orientation of the scattering dust using the observed light echoes at two or more epochs is critical for the correct interpretation of light echo spectra. Indeed, without doing so one might falsely conclude that differences exist when none are actually present.
We have discovered a luminous light echo around the normal Type II-Plateau Supernova (SN) 2012aw in Messier 95 (M95; NGC 3351), detected in images obtained approximately two years after explosion with the Wide Field Channel 3 on-board the Hubble Spac
I have discovered a prominent light echo around the low-luminosity Type II-Plateau Supernova (SN) 2008bk in NGC 7793, seen in archival images obtained with the Wide Field Channel of the Advanced Camera for Surveys on-board the Hubble Space Telescope
We identify a light echo candidate from Hubble Space Telescope (HST) imaging of NGC 2441, the host galaxy of the Type Ia supernova 1995E. From the echos angular size and the estimated distance to the host galaxy, we find a distance of 207 +/- 35 pc b
We present multiband photometry of 60 spectroscopically-confirmed supernovae (SN): 39 SN II/IIP, 19 IIn, one IIb and one that was originally classified as a IIn but later as a Ibn. Forty-six have only optical photometry, six have only near infrared (
Core-collapse supernova (SN) ejecta are probably structured on both small and large scales, with greater deviations from spherical symmetry nearer the explosion site. Here, we present 2D and 3D gray radiation-hydrodynamics simulations of type II SN l