ﻻ يوجد ملخص باللغة العربية
Game semantics provides an interactive point of view on proofs, which enables one to describe precisely their dynamical behavior during cut elimination, by considering formulas as games on which proofs induce strategies. We are specifically interested here in relating two such semantics of linear logic, of very different flavor, which both take in account concurrent features of the proofs: asynchronous games and concurrent games. Interestingly, we show that associating a concurrent strategy to an asynchronous strategy can be seen as a semantical counterpart of the focusing property of linear logic.
We study pure-strategy Nash equilibria in multi-player concurrent deterministic games, for a variety of preference relations. We provide a novel construction, called the suspect game, which transforms a multi-player concurrent game into a two-player
We consider parity games on infinite graphs where configurations are represented by control-states and integer vectors. This framework subsumes two classic game problems: parity games on vector addition systems with states (vass) and multidimensional
We prove that the determinacy of Gale-Stewart games whose winning sets are accepted by real-time 1-counter Buchi automata is equivalent to the determinacy of (effective) analytic Gale-Stewart games which is known to be a large cardinal assumption. We
Some decidable winning conditions of arbitrarily high finite Borel complexity for games on finite graphs or on pushdown graphs have been recently presented by O. Serre in [ Games with Winning Conditions of High Borel Complexity, in the Proceedings of
We prove that the determinacy of Gale-Stewart games whose winning sets are infinitary rational relations accepted by 2-tape Buchi automata is equivalent to the determinacy of (effective) analytic Gale-Stewart games which is known to be a large cardin