ترغب بنشر مسار تعليمي؟ اضغط هنا

A New Gas Cell for High-Precision Doppler Measurements in the Near-Infrared

222   0   0.0 ( 0 )
 نشر من قبل Luisa Valdivielso
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

High-resolution spectroscopy in the near-infrared could become the leading method for discovering extra-solar planets around very low-mass stars and brown dwarfs. To help to achieve an accuracy of ~m/s, we are developing a gas cell which consists of a mixture of gases whose absorption spectral lines span all over the near-infrared region. We present the most promising mixture, made of acetylene, nitrous oxide, ammonia, chloromethans and hydrocarbons. The mixture is contained in a small size 13 cm long gas cell and covers most of the H and K-bands. It also shows small absorptions in the J-band but they are few and not sharp enough for near infrared wavelength calibration. We describe the working method and experiments and compare our results with the state of the art for near infrared gas cells.



قيم البحث

اقرأ أيضاً

We discuss the laser frequency comb as a near infrared astronomical wavelength reference, and describe progress towards a near infrared laser frequency comb at the National Institute of Standards and Technology and at the University of Colorado where we are operating a laser frequency comb suitable for use with a high resolution H band astronomical spectrograph.
Modal noise in fibers has been shown to limit the signal-to-noise ratio achievable in fiber-coupled, high-resolution spectrographs if it is not mitigated via modal scrambling techniques. Modal noise become significantly more important as the waveleng th increases and presents a risk to the new generation of near-infrared precision radial spectrographs under construction or being proposed to search for planets around cool M-dwarf stars, which emit most of their light in the NIR. We present experimental results of tests at Penn State University characterizing modal noise in the far visible out to 1.5 microns and the degree of modal scrambling we obtained using mechanical scramblers. These efforts are part of a risk mitigation effort for the Habitable Zone Planet Finder spectrograph currently under development at Penn State University.
We have built and commissioned gas absorption cells for precision spectroscopic radial velocity measurements in the near-infrared in the H and K bands. We describe the construction and installation of three such cells filled with 13CH4, 12CH3D, and 1 4NH3 for the CSHELL spectrograph at the NASA Infrared Telescope Facility (IRTF). We have obtained their high-resolution laboratory Fourier Transform spectra, which can have other practical uses. We summarize the practical details involved in the construction of the three cells, and the thermal and mechanical control. In all cases, the construction of the cells is very affordable. We are carrying out a pilot survey with the 13CH4 methane gas cell on the CSHELL spectrograph at the IRTF to detect exoplanets around low mass and young stars. We discuss the current status of our survey, with the aim of photon-noise limited radial velocity precision. For adequately bright targets, we are able to probe a noise floor of 7 m/s with the gas cell with CSHELL at cassegrain focus. Our results demonstrate the feasibility of using a gas cell on the next generation of near-infrared spectrographs such as iSHELL on IRTF, iGRINS, and an upgraded NIRSPEC at Keck.
Although there exists a large sample of known exoplanets, little spectroscopic data exists that can be used to study their global atmospheric properties. This deficiency can be addressed by performing phase-resolved spectroscopy -- continuous spectro scopic observations of a planets entire orbit about its host star -- of transiting exoplanets. Planets with characteristics suitable for atmospheric characterization have orbits of several days, thus phase curve observations are highly resource intensive, especially for shared use facilities. In this work, we show that an infrared spectrograph operating from a high altitude balloon platform can perform phase-resolved spectroscopy of hot Jupiter-type exoplanets with performance comparable to a space-based telescope. Using the EXoplanet Climate Infrared TElescope (EXCITE) experiment as an example, we quantify the impact of the most important systematic effects that we expect to encounter from a balloon platform. We show an instrument like EXCITE will have the stability and sensitivity to significantly advance our understanding of exoplanet atmospheres. Such an instrument will both complement and serve as a critical bridge between current and future space-based near infrared spectroscopic instruments.
399 - F. Bouchy , R.F. Diaz , G. Hebrard 2012
High-precision spectrographs play a key role in exoplanet searches and Doppler asteroseismology using the radial velocity technique. The 1 m/s level of precision requires very high stability and uniformity of the illumination of the spectrograph. In fiber-fed spectrographs such as SOPHIE, the fiber-link scrambling properties are one of the main conditions for high precision. To significantly improve the radial velocity precision of the SOPHIE spectrograph, which was limited to 5-6 m/s, we implemented a piece of octagonal-section fiber in the fiber link. We present here the scientific validation of the upgrade of this instrument, demonstrating a real improvement. The upgraded instrument, renamed SOPHIE+, reaches radial velocity precision in the range of 1-2 m/s. It is now fully efficient for the detection of low-mass exoplanets down to 5-10 Earth mass and for the identification of acoustic modes down to a few tens of cm/s.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا