ﻻ يوجد ملخص باللغة العربية
I briefly review the theory of Holographic Space-time and its relation to the cosmological constant problem, and the breaking of supersymmetry (SUSY). When combined with some simple phenomenological requirements, these ideas lead to a fairly unique model for Tera-scale physics, which implies direct gauge mediation of SUSY breaking and a model for dark matter as a hidden sector baryon, with nonzero magnetic dipole moment.
Demanding that charged Nariai black holes in (quasi-)de Sitter space decay without becoming super-extremal implies a lower bound on the masses of charged particles, known as the Festina Lente (FL) bound. In this paper we fix the $mathcal{O}(1)$ const
The formalism of Holographic Space-time (HST) is a translation of the principles of Lorentzian geometry into the language of quantum information. Intervals along time-like trajectories, and their associated causal diamonds, completely characterize a
We consider a class of models with gauged U(1)_R symmetry in 4D N=1 supergravity that have, at the classical level, a metastable ground state, an infinitesimally small (tunable) positive cosmological constant and a TeV gravitino mass. We analyse if t
We construct Holographic Space-time models that reproduce the dynamics of $1 + 1$ dimensional string theory. The necessity for a dilaton field in the $1 + 1$ effective Lagrangian for classical geometry, the appearance of fermions, and even the form o
We present an overview of the phenomenological implications of the theory of resummed quantum gravity. We discuss its prediction for the cosmological constant in the context of the Planck scale cosmology of Bonanno and Reuter, its relationship to Wei