ﻻ يوجد ملخص باللغة العربية
Motivated by the role that spectral properties play for the dynamical evolution of a quantum many-body system, we investigate the level spacing statistic of the extended Bose-Hubbard model. In particular, we focus on the distribution of the ratio of adjacent level spacings, useful at large interaction, to distinguish between chaotic and non-chaotic regimes. After revisiting the bare Bose-Hubbard model, we study the effect of two different perturbations: next-nearest neighbor hopping and nearest-neighbor interaction. The system size dependence is investigated together with the effect of the proximity to integrable points or lines. Lastly, we discuss the consequences of a cutoff in the number of onsite bosons onto the level statistics.
The manipulation of many-body systems often involves time-dependent forces that cause unwanted heating. One strategy to suppress heating is to use time-periodic (Floquet) forces at large driving frequencies. For quantum spin systems with bounded spec
Recently, it has become apparent that, when the interactions between polar molecules in optical lattices becomes strong, the conventional description using the extended Hubbard model has to be modified by additional terms, in particular a density-dep
We present an unbiased numerical density-matrix renormalization group study of the one-dimensional Bose-Hubbard model supplemented by nearest-neighbor Coulomb interaction and bond dimerization. It places the emphasis on the determination of the groun
We study the bosonic two-body problem in a Su-Schrieffer-Heeger dimerized chain with on-site and nearest-neighbor interactions. We find two classes of bound states. The first, similar to the one induced by on-site interactions, has its center of mass
Bosonic lattice systems with non-trivial interactions represent an intriguing platform to study exotic phases of matter. Here, we study the effects of extended correlated hopping processes in a system of bosons trapped in a lattice geometry. The inte