ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic field generation in Higgs inflation model

152   0   0.0 ( 0 )
 نشر من قبل Moumita Das
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the generation of magnetic field in Higgs-inflation models where the Standard Model Higgs boson has a large coupling to the Ricci scalar. We couple the Higgs field to the Electromagnetic fields via a non- renormalizable dimension six operator suppressed by the Planck scale in the Jordan frame. We show that during Higgs inflation magnetic fields with present value $10^{-6}$ Gauss and comoving coherence length of $100 kpc$ can be generated in the Einstein frame. The problem of large back-reaction which is generic in the usual inflation models of magneto-genesis is avoided as the back-reaction is suppressed by the large Higgs-curvature coupling.



قيم البحث

اقرأ أيضاً

109 - L.A. Popa 2011
We consider the possibility to observationally differentiate the Standard Model (SM) Higgs driven inflation with non-minimal couplingto gravity from other variants of SM Higgs inflation based on the scalar field theories with non-canonical kinetic te rm such as Galileon-like kinetic term and kinetic term with non-minimal derivative coupling to the Einstein tensor. In order to ensure consistent results, we study the SM Higgs inflation variants by using the same method, computing the full dynamics of the background and perturbations of the Higgs field during inflation at quantum level. Assuming that all the SM Higgs inflation variants are consistent theories, we use the MCMC technique to derive constraints on the inflationnoary parameters and the Higgs boson mass from their fit to WMAP7+SN+BAO data set. We conclude that a combination of a Higgs mass measurement by the LHC and accurate determination by the PLANCK satellite of the spectral index of curvature perturbations and tensor-to-scalar ratio will enable to distinguish among these models. We also show that the consistency relations of the SM Higgs inflation variants are distinct enough to differentiate the models.
We explore inflation via the effective potential of the minimal Wess-Zumino model, considering both the real and imaginary components of the complex field. Using transport techniques, we calculate the full allowed range of $n_s$, $r$ and $f_{rm NL}$ for different choices of the single free parameter, $v$, and present the probability distribution of these signatures given a simple choice for the prior distribution of initial conditions. Our work provides a case study of multi-field inflation in a simple but realistic setting, with important lessons that are likely to apply more generally. For example, we find that there are initial conditions consistent with observations of $n_s$ and $r$ for values of $v$ that would be excluded if only evolutions in the real field direction were to be considered, and that these may yield enhanced values of $f_{rm NL}$. Moreover, we find that initial conditions fixed at high energy density, where the potential is close to quartic in form, can still lead to evolutions in a concave region of the potential during the observable number of e-folds, as preferred by present data. The Wess-Zumino model therefore provides an illustration that multi-field dynamics must be taken into account when seeking to understand fully the phenomenology of such models of inflation.
Inflationary cosmology represents a well-studied framework to describe the expansion of space in the early universe, as it explains the origin of the large-scale structure of the cosmos and the isotropy of the cosmic microwave background radiation. T he recent detection of the Higgs boson renewed research activities based on the assumption that the inflaton could be identified with the Higgs field. At the same time, the question whether the inflationary potential can be be extended to the electroweak scale and whether it should be necessarily chosen ad hoc in order to be physically acceptable are at the center of an intense debate. Here, we perform the slow-roll analysis of the so-called Massive Natural Inflation (MNI) model which has three adjustable parameters, the explicit mass term, a Fourier amplitude u, and a frequency parameter $beta$, in addition to a constant term of the potential. This theory has the advantage to present a structure of infinite non-degenerate minima and is amenable to an easy integration of high-energy modes. We show that, using PLANCK data, one can fix, in the large $beta$-region, the parameters of the model in a unique way. We also demonstrate that the value for the parameters chosen at the cosmological scale does not influence the results at the electroweak scale. We argue that other models can have similar properties both at cosmological and electroweak scales, but with the MNI model one can complete the theory towards low energies and easily perform the integration of modes up to the electroweak scale, producing the correct order-of-magnitude for the Higgs mass.
We present preliminary results on the possible effects that primordial magnetic fields can have for a warm inflation scenario, based on global supersymmetry, with a new-inflation-type potential. This work is motivated by two considerations: first, ma gnetic fields seem to be present in the universe on all scales, which rises the possibility that they could also permeate the early universe; second, the recent emergence of inflationary models where the inflaton is not assumed to be isolated but instead it is taken as an interacting field, even during the inflationary expansion. The effects of magnetic fields are included resorting to Schwinger proper time method.
141 - Jing Yang , , Ligong Bian 2021
We study the magnetic fields generation from the cosmological first-order electroweak phase transition. We calculate the magnetic field induced by the variation of the Higgs phase for two bubbles and three bubbles collisions. Our study shows that ele ctromagnetic currents in the collision direction produce the ring-like magnetic field in the intersect regions of colliding bubbles, which may seed the primordial magnetic field that are constrained by intergalatic field observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا