ترغب بنشر مسار تعليمي؟ اضغط هنا

Orbits of Six Late-type Active-Chromosphere Binaries

119   0   0.0 ( 0 )
 نشر من قبل Nurten Filiz Ak Mrs
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present spectroscopic orbits for the active stars HD 82159 (GS Leo), HD 89959, BD +39 2587 (a visual companion to HD 112733), HD 138157 (OX Ser), HD 143705, and HD 160934. This paper is a sequel to one published in this journal in 2006, with similar avowed intention, by Galvez et al.. They showed only graphs, and gave no data, and no orbital elements apart from the periods (only two of which were correct) and in some cases the eccentricities. Here we provide full information and reliable orbital elements for all the stars apart from HD 160934, which has not completed a cycle since it was first observed for radial velocity.



قيم البحث

اقرأ أيضاً

We present the spectroscopic orbits of eleven nearby, mid-to-late M dwarf binary systems in a variety of configurations: two single-lined binaries (SB1s), seven double-lined binaries (SB2s), one double-lined triple (ST2), and one triple-lined triple (ST3). Eight of these orbits are the first published for these systems, while five are newly identified multiples. We obtained multi-epoch, high-resolution spectra with the TRES instrument on the 1.5m Tillinghast Reflector at the Fred Lawrence Whipple Observatory located on Mt. Hopkins in AZ. Using the TiO molecular bands at 7065 -- 7165 Angstroms, we calculated radial velocities for these systems, from which we derived their orbits. We find LHS 1817 to have in a 7-hour period a companion that is likely a white dwarf, due to the ellipsoidal modulation we see in our MEarth-North light curve data. We find G 123-45 and LTT 11586 to host companions with minimum masses of 41 M_Jup and 44 M_Jup with orbital periods of 35 and 15 days, respectively. We find 2MA 0930+0227 to have a rapidly rotating stellar companion in a 917-day orbital period. GJ 268, GJ 1029, LP 734-34, GJ 1182, G 258-17, and LTT 7077 are SB2s with stellar companions with orbital periods of 10, 96, 34, 154, 5, and 84 days; LP 655-43 is an ST3 with one companion in an 18-day orbital period and an outer component in a longer undetermined period. In addition, we present radial velocities for both components of L 870-44AB and for the outer components of LTT 11586 and LP 655-43.
Our long term aim is to derive model-independent stellar masses and distances for long period massive binaries by combining apparent astrometric orbit with double-lined radial velocity amplitudes (SB2). We follow-up ten O+O binaries with AMBER, PIONI ER and GRAVITY at the VLTI. Here, we report about 130 astrometric observations over the last 7 years. We combine this dataset with distance estimates to compute the total mass of the systems. We also compute preliminary individual component masses for the five systems with available SB2 radial velocities. Nine over the ten binaries have their three dimensional orbit well constrained. Four of them are known colliding wind, non-thermal radio emitters, and thus constitute valuable targets for future high angular resolution radio imaging. Two binaries break the correlation between period and eccentricity tentatively observed in previous studies. It suggests either that massive star formation produce a wide range of systems, or that several binary formation mechanisms are at play. Finally, we found that the use of existing SB2 radial velocity amplitudes can lead to unrealistic masses and distances. If not understood, the biases in radial velocity amplitudes will represent an intrinsic limitation for estimating dynamical masses from SB2+interferometry or SB2+Gaia. Nevertheless, our results can be combined with future Gaia astrometry to measure the dynamical masses and distances of the individual components with an accuracy of 5 to 15%, completely independently of the radial velocities.
We present the physical parameters of 2335 late-type contact binary (CB) systems extracted from the Catalina Sky Survey (CSS). Our sample was selected from the CSS Data Release 1 by strictly limiting the prevailing temperature uncertainties and light -curve fitting residuals, allowing us to almost eliminate any possible contaminants. We developed an automatic Wilson--Devinney-type code to derive the relative properties of CBs based on their light-curve morphology. By adopting the distances derived from CB (orbital) period--luminosity relations (PLRs), combined with the well-defined mass--luminosity relation for the systems primary stars and assuming solar metallicity, we calculated the objects masses, radii, and luminosities. Our sample of fully eclipsing CBs contains 1530 W-, 710 A-, and 95 B-type CBs. A comparison with literature data and with the results from different surveys confirms the accuracy and coherence of our measurements. The period distributions of the various CB subtypes are different, hinting at a possible evolutionary sequence. W-type CBs are clearly located in a strip in the total mass versus mass ratio plane, while A-type CBs may exhibit a slightly different dependence. There are no significant differences among the PLRs of A- and W-type CBs, but the PLR zero points are affected by their mass ratios and fill-out factors. Determination of zero-point differences for different types of CBs may help us improve the accuracy of the resulting PLRs. We demonstrate that automated approaches to deriving CB properties could be a powerful tool for application to the much larger CB samples expected to result from future surveys.
231 - Joel H. Kastner 2017
The Galex Nearby Young Star Survey (GALNYSS) has yielded a sample of $sim$2000 UV-selected objects that are candidate nearby ($D stackrel{<}{sim}$150 pc), young (age $sim$10--100 Myr), late-type stars. Here, we evaluate the distances and ages of the subsample of (19) GALNYSS stars with Gaia Data Release 1 (DR1) parallax distances $D le 120$ pc. The overall youth of these 19 mid-K to early-M stars is readily apparent from their positions relative to the loci of main sequence stars and giants in Gaia-based color-magnitude and color-color diagrams constructed for all Galex- and WISE-detected stars with parallax measurements included in DR1. The isochronal ages of all 19 stars lie in the range $sim$10--100 Myr. Comparison with Li-based age estimates indicates a handful of these stars may be young main-sequence binaries rather than pre-main sequence stars. Nine of the 19 objects have not previously been considered as nearby, young stars, and all but one of these are found at declinations north of $+$30$^circ$. The Gaia DR1 results presented here indicate that the GALNYSS sample includes several hundred nearby, young stars, a substantial fraction of which have not been previously recognized as having ages $stackrel{<}{sim}$100 Myr.
We present a determination of precise fundamental physical parameters of twenty detached, double- lined, eclipsing binary stars in the Large Magellanic Cloud (LMC) containing G- or early K-type giant stars. Eleven are new systems, the remaining nine are systems already analyzed by our team for which we present updated parameters. The catalogue results from our long-term survey of eclipsing binaries in the Magellanic Clouds suitable for high-precision determination of distances (the Araucaria project). The V-band brightnesses of the systems range from 15.4 mag to 17.7 mag and their orbital periods range from 49 days to 773 days. Six systems have favorable geometry showing total eclipses. The absolute dimensions of all eclipsing binary components are calculated with a precision of better than 3% and all systems are suitable for a precise distance determination. The measured stellar masses are in the range 1.4 to 4.6 M_sun and comparison with the MESA isochrones gives ages between 0.1 and 2.1 Gyr. The systems show some weak age-metallicity relation. Two systems have components with very different masses: OGLE LMC-ECL-05430 and OGLE LMC-ECL-18365. Neither system can be fitted by single stellar evolution isochrone, explained by a past mass transfer scenario in the case of ECL-18365 and a gravitational capture or a hierarchical binary merger scenario in the case of ECL-05430. The longest period system OGLE LMC SC9 230659 shows a surprising apsidal motion which shifts the apparent position of the eclipses. In one spectrum of OGLE LMC-ECL-12669 we noted a peculiar dimming of one of the components by 65% well outside of the eclipses. We interpret this observation as arising from an extremely rare occultation event as a foreground Galactic object covers only one component of an extragalactic eclipsing binary.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا