ترغب بنشر مسار تعليمي؟ اضغط هنا

The Field X-ray AGN Fraction to z=0.7 from the Chandra Multiwavelength Project and the Sloan Digital Sky Survey

52   0   0.0 ( 0 )
 نشر من قبل Daryl Haggard
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We employ the Chandra Multiwavelength Project (ChaMP) and the Sloan Digital Sky Survey (SDSS) to study the fraction of X-ray-active galaxies in the field out to z = 0.7. We utilize spectroscopic redshifts from SDSS and ChaMP, as well as photometric redshifts from several SDSS catalogs, to compile a parent sample of more than 100,000 SDSS galaxies and nearly 1,600 Chandra X-ray detections. Detailed ChaMP volume completeness maps allow us to investigate the local fraction of active galactic nuclei (AGN), defined as those objects having broad-band X-ray luminosities L_X (0.5-8 keV) > 10^42 erg s^-1, as a function of absolute optical magnitude, X-ray luminosity, redshift, mass, and host color/morphological type. In five independent samples complete in redshift and i-band absolute magnitude, we determine the field AGN fraction to be between 0.16 +/- 0.06% (for z < 0.125 and -18 > M_i > -20) and 3.80 +/- 0.92% (for z < 0.7 and M_i < -23). We find striking agreement between our ChaMP/SDSS field AGN fraction and the Chandra cluster AGN fraction, for samples restricted to similar redshift and absolute magnitude ranges: 1.19 +/- 0.11% of ChaMP/SDSS field galaxies with 0.05 < z < 0.31 and absolute R-band magnitude more luminous than M_R < -20 are AGN. Our results are also broadly consistent with measures of the field AGN fraction in narrow, deep fields, though differences in the optical selection criteria, redshift coverage, and possible cosmic variance between fields introduce larger uncertainties in these comparisons.

قيم البحث

اقرأ أيضاً

We investigate systematically the X-ray emission from type 1 quasars using a sample of 1825 Sloan Digital Sky Survey (SDSS) non-broad absorption line (non-BAL) quasars with Chandra archival observations. A significant correlation is found between the X-ray-to-optical power-law slope parameter ($alpha_{rm OX}$) and the 2500 $r{A}$ monochromatic luminosity ($L_{rm 2500~r{A}}$), and the X-ray weakness of a quasar is assessed via the deviation of its $alpha_{rm OX}$ value from that expected from this relation. We demonstrate the existence of a population of non-BAL X-ray weak quasars, and the fractions of quasars that are X-ray weak by factors of $ge6$ and $ge10$ are $5.8pm0.7%$ and $2.7pm0.5%$, respectively. We classify the X-ray weak quasars (X-ray weak by factors of $ge6$) into three categories based on their optical spectral features: weak emission-line quasars (WLQs; CIV REW $<16~r{A}$), red quasars ($Delta(g-i)>0.2$), and unclassified X-ray weak quasars. The X-ray weak fraction of $35_{- 9}^{+12}%$ within the WLQ population is significantly higher than that within non-WLQs, confirming previous findings that WLQs represent one population of X-ray weak quasars. The X-ray weak fraction of $13_{- 3}^{+ 5}%$ within the red quasar population is also considerably higher than that within the normal quasar population. The unclassified X-ray weak quasars do not have unusual optical spectral features, and their X-ray weakness may be mainly related to quasar X-ray variability.
The Sloan Digital Sky Survey Reverberation Mapping project (SDSS-RM) is a dedicated multi-object RM experiment that has spectroscopically monitored a sample of 849 broad-line quasars in a single 7 deg$^2$ field with the SDSS-III BOSS spectrograph. Th e RM quasar sample is flux-limited to i_psf=21.7 mag, and covers a redshift range of 0.1<z<4.5. Optical spectroscopy was performed during 2014 Jan-Jul dark/grey time, with an average cadence of ~4 days, totaling more than 30 epochs. Supporting photometric monitoring in the g and i bands was conducted at multiple facilities including the CFHT and the Steward Observatory Bok telescopes in 2014, with a cadence of ~2 days and covering all lunar phases. The RM field (RA, DEC=14:14:49.00, +53:05:00.0) lies within the CFHT-LS W3 field, and coincides with the Pan-STARRS 1 (PS1) Medium Deep Field MD07, with three prior years of multi-band PS1 light curves. The SDSS-RM 6-month baseline program aims to detect time lags between the quasar continuum and broad line region (BLR) variability on timescales of up to several months (in the observed frame) for ~10% of the sample, and to anchor the time baseline for continued monitoring in the future to detect lags on longer timescales and at higher redshift. SDSS-RM is the first major program to systematically explore the potential of RM for broad-line quasars at z>0.3, and will investigate the prospects of RM with all major broad lines covered in optical spectroscopy. SDSS-RM will provide guidance on future multi-object RM campaigns on larger scales, and is aiming to deliver more than tens of BLR lag detections for a homogeneous sample of quasars. We describe the motivation, design and implementation of this program, and outline the science impact expected from the resulting data for RM and general quasar science.
65 - K. D. Denney 2016
We use the coadded spectra of 32 epochs of Sloan Digital Sky Survey (SDSS) Reverberation Mapping Project observations of 482 quasars with z>1.46 to highlight systematic biases in the SDSS- and BOSS-pipeline redshifts due to the natural diversity of q uasar properties. We investigate the characteristics of this bias by comparing the BOSS-pipeline redshifts to an estimate from the centroid of HeII 1640. HeII has a low equivalent width but is often well-defined in high-S/N spectra, does not suffer from self-absorption, and has a narrow component that, when present (the case for about half of our sources), produces a redshift estimate that, on average, is consistent with that determined from [OII] to within 1-sigma of the quadrature sum of the HeII and [OII] centroid measurement uncertainties. The large redshift differences of ~1000 km/s, on average, between the BOSS-pipeline and HeII-centroid redshifts suggest there are significant biases in a portion of BOSS quasar redshift measurements. Adopting the HeII-based redshifts shows that CIV does not exhibit a ubiquitous blueshift for all quasars, given the precision probed by our measurements. Instead, we find a distribution of CIV centroid blueshifts across our sample, with a dynamic range that (i) is wider than that previously reported for this line, and (ii) spans CIV centroids from those consistent with the systemic redshift to those with significant blueshifts of thousands of kilometers per second. These results have significant implications for measurement and use of high-redshift quasar properties and redshifts and studies based thereon.
The XMM-RM project was designed to provide X-ray coverage of the Sloan Digital Sky Survey Reverberation Mapping (SDSS-RM) field. 41 XMM-Newton exposures, placed surrounding the Chandra AEGIS field, were taken, covering an area of 6.13 deg^2 and reach ing a nominal exposure depth of ~15 ks. We present an X-ray catalog of 3553 sources detected in these data, using a PSF-fitting algorithm and a sample selection threshold that produces a ~5% fraction of spurious sources. In addition to the PSF-fitting likelihood, we calculate a second source reliability measure based on Poisson theory using source and background counts within an aperture. Using the Poissonian likelihood, we select a sub-sample with a high purity and find that it has similar number count profiles to previous X-ray surveys. The Bayesian method NWAY was employed to identify counterparts of the X-ray sources from the optical Legacy and the IR unWISE catalogs, using a 2-dimensional unWISE magnitude-color prior created from optical/IR counterparts of Chandra X-ray sources. A significant number of the optical/IR counterparts correspond to sources with low detection likelihoods, proving the value of retaining the low-likelihood detections in the catalog. 932 of the XMM-RM sources are covered by SDSS spectroscopic observations. 89% of them are classified as AGN, and 71% of these AGN are in the SDSS-RM quasar catalog. Among the SDSS-RM quasars, 80% are detectable at the depth of the XMM observations.
We present host stellar velocity dispersion measurements for a sample of 88 broad-line quasars at 0.1<z<1 (46 at z>0.6) from the Sloan Digital Sky Survey Reverberation Mapping (SDSS-RM) project. High signal-to-noise ratio coadded spectra (average S/N ~30 per 69 km/s pixel) from SDSS-RM allowed decomposition of the host and quasar spectra, and measurement of the host stellar velocity dispersions and black hole (BH) masses using the single-epoch (SE) virial method. The large sample size and dynamic range in luminosity (L5100=10^(43.2-44.7) erg/s) lead to the first clear detection of a correlation between SE virial BH mass and host stellar velocity dispersion far beyond the local universe. However, the observed correlation is significantly flatter than the local relation, suggesting that there are selection biases in high-z luminosity-threshold quasar samples for such studies. Our uniform sample and analysis enable an investigation of the redshift evolution of the M-sigma relation free of caveats by comparing different samples/analyses at disjoint redshifts. We do not observe evolution of the M-sigma relation in our sample, up to z~1, but there is an indication that the relation flattens towards higher redshifts. Coupled with the increasing threshold luminosity with redshift in our sample, this again suggests certain selection biases are at work, and simple simulations demonstrate that a constant M-sigma relation is favored to z~1. Our results highlight the scientific potential of deep coadded spectroscopy from quasar monitoring programs, and offer a new path to probe the co-evolution of BHs and galaxies at earlier times.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا