ترغب بنشر مسار تعليمي؟ اضغط هنا

Discrepant hardening observed in cosmic-ray elemental spectra

114   0   0.0 ( 0 )
 نشر من قبل JiHye Han
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The balloon-borne Cosmic Ray Energetics And Mass (CREAM) experiment launched five times from Antarctica has achieved a cumulative flight duration of about 156 days above 99.5% of the atmosphere. The instrument is configured with complementary and redundant particle detectors designed to extend direct measurements of cosmic-ray composition to the highest energies practical with balloon flights. All elements from protons to iron nuclei are separated with excellent charge resolution. Here we report results from the first two flights of ~70 days, which indicate hardening of the elemental spectra above ~200 GeV/nucleon and a spectral difference between the two most abundant species, protons and helium nuclei. These results challenge the view that cosmic-ray spectra are simple power laws below the so-called knee at ~1015 eV. This discrepant hardening may result from a relatively nearby source, or it could represent spectral concavity caused by interactions of cosmic rays with the accelerating shock. Other possible explanations should also be investigated.



قيم البحث

اقرأ أيضاً

114 - Jia-Shu Niu 2020
Many experiments have confirmed the spectral hardening in a few hundred GV of cosmic ray (CR) nuclei spectra, and 3 different origins have been proposed: the primary source acceleration, the propagation, and the superposition of different kinds of so urces. In this work, the break power law has been employed to fit each of the AMS-02 nuclei spectra directly when the rigidity greater than 45 GV. The fitting results of the break rigidity and the spectral index differences less and greater than the break rigidity show complicated relationships among different nuclei species, which could not been reproduced naturally by a simple primary source scenario or a propagation scenario. However, with a natural and simple assumption, the superposition of different kinds of sources could have the potential to explain the fitting results successfully. CR nuclei spectra from one single experiment in future (such as DAMPE) will provide us the opportunity to do cross checks and reveal the properties of the different kinds of sources.
We present new measurements of the energy spectra of cosmic-ray (CR) nuclei from the second flight of the balloon-borne experiment CREAM (Cosmic Ray Energetics And Mass). The instrument (CREAM-II) was comprised of detectors based on different techniq ues (Cherenkov light, specific ionization in scintillators and silicon sensors) to provide a redundant charge identification and a thin ionization calorimeter capable of measuring the energy of cosmic rays up to several hundreds of TeV. The data analysis is described and the individual energy spectra of C, O, Ne, Mg, Si and Fe are reported up to ~ 10^14 eV. The spectral shape looks nearly the same for all the primary elements and can be expressed as a power law in energy E^{-2.66+/-0.04}. The nitrogen absolute intensity in the energy range 100-800 GeV/n is also measured.
The KASCADE-Grande air shower experiment [W. Apel, et al. (KASCADE-Grande collaboration), Nucl. Instrum. Methods A 620 (2010) 202] consists of, among others, a large scintillator array for measurements of charged particles, Nch, and of an array of sh ielded scintillation counters used for muon counting, Nmu. KASCADE-Grande is optimized for cosmic ray measurements in the energy range 10 PeV to about 2000 PeV, where exploring the composition is of fundamental importance for understanding the transition from galactic to extragalactic origin of cosmic rays. Following earlier studies of the all-particle and the elemental spectra reconstructed in the knee energy range from KASCADE data [T. Antoni, et al. (KASCADE collaboration), Astropart. Phys. 24 (2005) 1], we have now extended these measurements to beyond 200 PeV. By analysing the two-dimensional shower size spectrum Nch vs. Nmu for nearly vertical events, we reconstruct the energy spectra of different mass groups by means of unfolding methods over an energy range where the detector is fully efficient. The procedure and its results, which are derived based on the hadronic interaction model QGSJET-II-02 and which yield a strong indication for a dominance of heavy mass groups in the covered energy range and for a knee-like structure in the iron spectrum at around 80 PeV, are presented. This confirms and further refines the results obtained by other analyses of KASCADE-Grande data, which already gave evidence for a knee-like structure in the heavy component of cosmic rays at about 80 PeV [W. Apel, et al. (KASCADE-Grande collaboration), Phys. Rev. Lett. 107 (2011) 171104].
The KASCADE-Grande experiment, located at KIT-Karlsruhe, Germany, consists of a large scintillator array for measurements of charged particles, N_ch, and of an array of shielded scintillation counters used for muon counting, N_mu. KASCADE-Grande is o ptimized for cosmic ray measurements in the energy range 10 PeV to 1000 PeV, thereby enabling the verification of a knee in the iron spectrum expected at approximately 100 PeV. Exploring the composition in this energy range is of fundamental importance for understanding the transition from galactic to extragalactic cosmic rays. Following earlier studies of elemental spectra reconstructed in the knee energy range from KASCADE data, we have now extended these measurements to beyond 100 PeV. By analysing the two-dimensional shower size spectrum N_ch vs. N_mu, we reconstruct the energy spectra of different mass groups by means of unfolding methods. The procedure and its results, giving evidence for a knee-like structure in the spectrum of iron nuclei, will be presented.
104 - S. Recchia , S. Gabici 2017
In the last few years several experiments have shown that the cosmic ray spectrum below the knee is not a perfect power-law. In particular, the proton and helium spectra show a spectral hardening by ~ 0.1-0.2 in spectral index at particle energies of ~ 200-300 GeV/nucleon. Moreover, the helium spectrum is found to be harder than that of protons by ~ 0.1 and some evidence for a similar hardening was also found in the spectra of heavier elements. Here we consider the possibility that the hardening may be the result of a dispersion in the slope of the spectrum of cosmic rays accelerated at supernova remnant shocks. Such a dispersion is indeed expected within the framework of non-linear theories of diffusive shock acceleration, which predict steeper (harder) particle spectra for larger (smaller) cosmic ray acceleration efficiencies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا