ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetoelastic and structural properties of azurite Cu3(CO3)2(OH)2 from neutron scattering and muon spin rotation

51   0   0.0 ( 0 )
 نشر من قبل Kirrily Rule
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Azurite, Cu3(CO3)2(OH)2, has been considered an ideal example of a one-dimensional (1D) diamond chain antiferromagnet. Early studies of this material imply the presence of an ordered antiferromagnetic phase below $T_N sim 1.9$ K while magnetization measurements have revealed a 1/3 magnetization plateau. Until now, no corroborating neutron scattering results have been published to confirm the ordered magnetic moment structure. We present recent neutron diffraction results which reveal the presence of commensurate magnetic order in azurite which coexists with significant magnetoelastic strain. The latter of these effects may indicate the presence of spin frustration in zero applied magnetic field. Muon spin rotation, $mu$SR, reveals an onset of short-range order below 3K and confirms long-range order below $T_N$.

قيم البحث

اقرأ أيضاً

We investigate the magnetic properties of spin-$1/2$ charged Fermi gases with ferromagnetic coupling via mean-field theory, and find the interplay among the paramagnetism, diamagnetism and ferromagnetism. Paramagnetism and diamagnetism compete with e ach other. When increasing the ferromagnetic coupling the spontaneous magnetization occurs in a weak magnetic field. The critical ferromagnetic coupling constant of the paramagnetic phase to ferromagnetic phase transition increases linearly with the temperature. Both the paramagnetism and diamagnetism increase when the magnetic field increases. It reveals the magnetization density $bar M$ increases firstly as the temperature increases, and then reaches a maximum. Finally the magnetization density $bar M$ decreases smoothly in the high temperature region. The domed shape of the magnetization density $bar M$ variation is different from the behavior of Bose gas with ferromagnetic coupling. We also find the curve of susceptibility follows the Curie-Weiss law, and for a given temperature the susceptibility is directly proportional to the Land{e} factor.
By high temperature series expansion, exact diagonalisation and temperature density-matrix renormalisation the magnetic susceptibility $chi(T)$ and the specific heat $C(T)$ of dimerised and frustrated $S=1/2$ chains are computed. All three methods yi eld reliable results, in particular for not too small temperatures or not too small gaps. The series expansion results are provided in the form of polynomials allowing very fast and convenient fits in data analysis using algebraic programmes. We discuss the difficulty to extract more than two coupling constants from the temperature dependence of $chi(T)$.
A full energy spectrum of the spin-1/2 Heisenberg cubic cluster is used to investigate a low-temperature magnetization process and adiabatic demagnetization of this zero-dimensional 2x2x2 quantum spin system. It is shown that the antiferromagnetic sp in-1/2 Heisenberg cube exhibits at low enough temperatures a stepwise magnetization curve with four intermediate plateaux at zero, one quarter, one half, and three quarters of the saturation magnetization. We have also found the enhanced magnetocaloric effect close to level-crossing fields that determine transitions between the intermediate plateaux.
A full energy spectrum, magnetization and susceptibility of a spin-1/2 Heisenberg model on two edge-shared tetrahedra are exactly calculated by assuming two different coupling constants. It is shown that a ground state in zero field is either a singl et or a triplet state depending on a relative strength of both coupling constants. Low-temperature magnetization curves may exhibit three different sequences of intermediate plateaux at the following fractional values of the saturation magnetization: 1/3-2/3-1, 0-1/3-2/3-1 or 0-2/3-1. The inverse susceptibility displays a marked temperature dependence significantly influenced by a character of the zero-field ground state. The obtained theoretical results are confronted with recent high-field magnetization data of the mineral crystal fedotovite K2Cu3(SO4)3.
79 - V. Hinkov , B. Keimer , A. Ivanov 2010
We present a comprehensive inelastic neutron scattering study of the magnetic excitations in twin-free YBa(2)Cu(3)O(6.6) (Tc=61 K) for 5 K < T < 290 K. Taking full account of the instrumental resolution, we derive analytical model functions for the m agnetic susceptibility chi(Q,omega) at T = 5 K and 70 K in absolute units. Our models are supported by previous results on similar samples and are valid at least up to excitation energies of omega = 100 meV. The detailed knowledge of chi(Q,omega) permits quantitative comparison to the results of complementary techniques including angle-resolved photoemission spectroscopy (ARPES), as demonstrated in Dahm et al., Nature Phys. 5, 217, (2009). Based on accurate modeling of the effect of the resolution function on the detected intensity, we determine important intrinsic features of the spin excitation spectrum, with a focus on the differences above and below Tc. In particular, at T = 70 K the spectrum exhibits a pronounced twofold in-plane anisotropy at low energies, which evolves towards fourfold rotational symmetry at high energies, and the relation dispersion is Y-shaped. At T = 5 K, on the other hand, the spectrum develops a continuous, downward-dispersing resonant mode with weaker in-plane anisotropy. We understand this topology change as arising from the competition between superconductivity and the same electronic liquid-crystal state as observed in YBa(2)Cu(3)O(6.45). We discuss our data in the context of different theoretical scenarios suggested to explain this state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا