ﻻ يوجد ملخص باللغة العربية
Gamma-ray binaries could be compact pulsar wind nebulae formed when a young pulsar orbits a massive star. The pulsar wind is contained by the stellar wind of the O or Be companion, creating a relativistic comet-like structure accompanying the pulsar along its orbit. The X-ray and the very high energy (>100 GeV, VHE) gamma-ray emissions from the binary LS 5039 are modulated on the orbital period of the system. Maximum and minimum flux occur at the conjunctions of the orbit, suggesting that the explanation is linked to the orbital geometry. The VHE modulation has been proposed to be due to the combined effect of Compton scattering and pair production on stellar photons, both of which depend on orbital phase. The X-ray modulation could be due to relativistic Doppler boosting in the comet tail where both the X-ray and VHE photons would be emitted. Relativistic aberrations change the seed stellar photon flux in the comoving frame so Doppler boosting affects synchrotron and inverse Compton emission differently. The dependence with orbital phase of relativistic Doppler-boosted (isotropic) synchrotron and (anisotropic) inverse Compton emission is calculated, assuming that the flow is oriented radially away from the star (LS 5039) or tangentially to the orbit (LS I +61 303, PSR B1259-63). Doppler boosting of the synchrotron emission in LS 5039 produces a lightcurve whose shape corresponds to the X-ray modulation. The observations imply an outflow velocity of 0.15-0.33c consistent with the expected flow speed at the pulsar wind termination shock. In LS I +61 303, the calculated Doppler boosted emission peaks in phase with the observed VHE and X-ray maximum. Doppler boosting might provide an explanation for the puzzling phasing of the VHE peak in this system.
More than a dozen binary systems are now established as sources of variable, high energy (HE, 0.1-100 GeV) gamma rays. Five are also established sources of very high energy (VHE, >100 GeV) gamma rays. The mechanisms behind gamma-ray emission in binar
Detailed modeling of the high-energy emission from gamma-ray binaries has been propounded as a path to pulsar wind physics. Fulfilling this ambition requires a coherent model of the flow and its emission in the region where the pulsar wind interacts
Gamma-ray binaries (GBs) have been object of intense studies in the last decade. From an observational perspective, GBs are phenomenologically similar to most X-ray binary systems in terms of their broad-band emission across the entire electromagneti
Context. Gamma-ray binaries are systems that radiate the dominant part of their non-thermal emission in the gamma-ray band. In a wind-driven scenario, these binaries are thought to consist of a pulsar orbiting a massive star, accelerating particles i
Gamma-ray binaries are a subclass of high-mass binary systems whose energy spectrum peaks at high energies (E$gtrsim$100 MeV) and extends to very high energies (E$gtrsim$100 GeV) $gamma$ rays. In this review we summarize properties of well-studied no