ﻻ يوجد ملخص باللغة العربية
We study the lattice spacing dependence, or scaling, of physical quantities using the highly improved staggered quark (HISQ) action introduced by the HPQCD/UKQCD collaboration, comparing our results to similar simulations with the asqtad fermion action. Results are based on calculations with lattice spacings approximately 0.15, 0.12 and 0.09 fm, using four flavors of dynamical HISQ quarks. The strange and charm quark masses are near their physical values, and the light-quark mass is set to 0.2 times the strange-quark mass. We look at the lattice spacing dependence of hadron masses, pseudoscalar meson decay constants, and the topological susceptibility. In addition to the commonly used determination of the lattice spacing through the static quark potential, we examine a determination proposed by the HPQCD collaboration that uses the decay constant of a fictitious unmixed s bar s pseudoscalar meson. We find that the lattice artifacts in the HISQ simulations are much smaller than those in the asqtad simulations at the same lattice spacings and quark masses.
We describe recent progress on generation of gauge configurations using the Highly Improved Staggered Quark (HISQ) action that was designed by the HPQCD/UKQCD collaboration. The HISQ action requires two levels of smearing with a reunitarization of th
I report on a calculation of bilinear Z-factors needed for determining Z_m using non-perturbative renormalization (NPR) on n_f=2+1+1 HISQ ensembles. RI/MOM and RI/SMOM schemes are studied. These will provide an independent determination of quark mass
We present a new (and general) algorithm for deriving lattice Feynman rules which is capable of handling actions as complex as the Highly Improved Staggered Quark (HISQ) action. This enables us to perform a perturbative calculation of the influence o
We fit lattice-QCD data for light-pseudoscalar masses and decay constants, from HISQ configurations generated by MILC, to SU(3) staggered chiral perturbation theory. At present such fits have rather high values of chi^2/d.o.f., possibly due to the la
The present paper concludes our investigation on the QCD equation of state with 2+1 staggered flavors and one-link stout improvement. We extend our previous study [JHEP 0601:089 (2006)] by choosing even finer lattices. Lattices with $N_t=6,8$ and 10