ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraints on the flux of Ultra-High Energy neutrinos from WSRT observations

130   0   0.0 ( 0 )
 نشر من قبل Stijn Buitink
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Ultra-high energy (UHE) neutrinos and cosmic rays initiate particle cascades underneath the Moons surface. These cascades have a negative charge excess and radiate Cherenkov radio emission in a process known as the Askaryan effect. The optimal frequency window for observation of these pulses with radio telescopes on the Earth is around 150 MHz. By observing the Moon with the Westerbork Synthesis Radio Telescope array we are able to set a new limit on the UHE neutrino flux. The PuMa II backend is used to monitor the Moon in 4 frequency bands between 113 and 175 MHz with a sampling frequency of 40 MHz. The narrowband radio interference is digitally filtered out and the dispersive effect of the Earths ionosphere is compensated for. A trigger system is implemented to search for short pulses. By inserting simulated pulses in the raw data, the detection efficiency for pulses of various strength is calculated. With 47.6 hours of observation time, we are able to set a limit on the UHE neutrino flux. This new limit is an order of magnitude lower than existing limits. In the near future, the digital radio array LOFAR will be used to achieve an even lower limit.

قيم البحث

اقرأ أيضاً

We study the production of cosmogenic neutrinos and photons during the extragalactic propagation of ultra-high-energy cosmic rays (UHECRs). For a wide range of models in cosmological evolution of source luminosity, composition and maximum energy we c alculate the expected flux of cosmogenic secondaries by normalizing our cosmic ray output to experimental spectra and comparing the diffuse flux of GeV-TeV gamma-rays to the experimental one measured by the Fermi satellite. Most of these models yield significant neutrino fluxes for current experiments like IceCube or Pierre Auger. Furthermore, we discuss the possibilities of signing the presence of UHE proton sources either within or outside the cosmic ray horizon using neutrinos or photons observations even if the cosmic ray composition becomes heavier at the highest energies. We discuss the possible constraints that could be brought on the UHECR origin from the different messengers and energy ranges.
The Askaryan Radio Array (ARA) is an ultra-high energy (UHE, $>10^{17}$ eV) neutrino detector designed to observe neutrinos by searching for the radio waves emitted by the relativistic products of neutrino-nucleon interactions in Antarctic ice. In th is paper, we present constraints on the diffuse flux of ultra-high energy neutrinos between $10^{16}-10^{21}$ eV resulting from a search for neutrinos in two complementary analyses, both analyzing four years of data (2013-2016) from the two deep stations (A2, A3) operating at that time. We place a 90 % CL upper limit on the diffuse all flavor neutrino flux at $10^{18}$ eV of $EF(E)=5.6times10^{-16}$ $textrm{cm}^{-2}$$textrm{s}^{-1}$$textrm{sr}^{-1}$. This analysis includes four times the exposure of the previous ARA result, and represents approximately 1/5 the exposure expected from operating ARA until the end of 2022.
The ANtarctic Impulsive Transient Antenna (ANITA) NASA long-duration balloon payload completed its fourth flight in December 2016, after 28 days of flight time. ANITA is sensitive to impulsive broadband radio emission from interactions of ultra-high- energy neutrinos in polar ice (Askaryan emission). We present the results of two separate blind analyses searching for signals from Askaryan emission in the data from the fourth flight of ANITA. The more sensitive analysis, with a better expected limit, has a background estimate of $0.64^{+0.69}_{-0.45}$ and an analysis efficiency of $82pm2%$. The second analysis has a background estimate of $0.34^{+0.66}_{-0.16}$ and an analysis efficiency of $71pm6%$. Each analysis found one event in the signal region, consistent with the background estimate for each analysis. The resulting limit further tightens the constraints on the diffuse flux of ultra-high-energy neutrinos at energies above $10^{19.5}$ eV.
The Z-burst mechanism invoked to explain ultra-high energy cosmic rays is severely constrained by measurements of the cosmic gamma-ray background by EGRET. We discuss the case of optically thick sources and show that jets and hot spots of active gala xies cannot provide the optical depth required to suppress the photon flux. Other extragalactic accelerators (AGN cores and sites of gamma ray bursts), if they are optically thick, could be tested by future measurements of the secondary neutrino flux.
76 - Cosmin Deaconu 2019
The ANtarctic Impulsive Transient Antenna (ANITA) long-duration balloon experiment flies an interferometric radio array over Antarctica with a primary goal of detecting impulsive Askaryan radio emission from ultra-high-energy neutrinos interacting in the ice sheet. The third and fourth ANITA flights were completed in January 2015 and December 2016, respectively, obtaining the most stringent limits on the diffuse ultra-high-energy neutrino flux above 10$^{19.5}$ eV to date. We also discuss ongoing analyses and the proposed Payload for Ultrahigh Energy Observations (PUEO), the successor to the ANITA program. PUEOs larger number of antennas and improved trigger would significantly improve sensitivity compared to ANITA-IV.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا