ﻻ يوجد ملخص باللغة العربية
We study the self adjoint extensions of a class of non maximal multiplication operators with boundary conditions. We show that these extensions correspond to singular rank one perturbations (in the sense of cite{AK}) of the Laplace operator, namely the formal Laplacian with a singular delta potential, on the half space. This construction is the appropriate setting to describe the Casimir effect related to a massless scalar field in the flat space time with an infinite conducting plate and in the presence of a point like impurity. We use the relative zeta determinant (as defined in cite{Mul} and cite{SZ}) in order to regularize the partition function of this model. We study the analytic extension of the associated relative zeta function, and we present explicit results for the partition function, and for the Casimir force.
In this work we study the Casimir effect for massless scalar fields propagating in a piston geometry of the type $Itimes N$ where $I$ is an interval of the real line and $N$ is a smooth compact Riemannian manifold. Our analysis represents a generaliz
Applying the general framework for local zeta regularization proposed in Part I of this series of papers, we renormalize the vacuum expectation value of the stress-energy tensor (and of the total energy) for a scalar field in presence of an external harmonic potential.
We review the definition of hypergroups by Sunder, and we associate a hypergroup to a type III subfactor $Nsubset M$ of finite index, whose canonical endomorphism $gammainmathrm{End}(M)$ is multiplicity-free. It is realized by positive maps of $M$ th
We obtain new expressions for the Casimir energy between plates that are mimicked by the most general possible boundary conditions allowed by the principles of quantum field theory. This result enables to provide the quantum vacuum energy for scalar
In Part I of this series of papers we have described a general formalism to compute the vacuum effects of a scalar field via local (or global) zeta regularization. In the present Part II we exemplify the general formalism in a number of cases which c