ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermodynamics of Quasi Conformal Theories From Gauge/Gravity Duality

163   0   0.0 ( 0 )
 نشر من قبل Keijo Kajantie
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We use gauge/gravity duality to study the thermodynamics of a generic almost conformal theory, specified by its beta function. Three different phases are identified, a high temperature phase of massless partons, an intermediate quasi-conformal phase and a low temperature confining phase. The limit of a theory with infrared fixed point, in which the coupling does not run to infinity, is also studied. The transitions between the phases are of first order or continuous, depending on the parameters of the beta function. The results presented follow from gauge/gravity duality; no specific boundary theory is assumed, only its beta function.



قيم البحث

اقرأ أيضاً

146 - J. Alanen , T. Alho , K. Kajantie 2011
We use gauge/gravity duality to study simultaneously the mass spectrum and the thermodynamics of a generic quasi-conformal gauge theory, specified by its beta function. The beta function of a quasi-conformal theory almost vanishes, and the coupling i s almost constant between two widely separated energy scales. Depending on whether the gravity dual has a black hole or not, the mass spectrum is either a spectrum of quasinormal oscillations or a normal T=0 mass spectrum. The mass spectrum is quantitatively correlated with the thermal properties of the system. As the theory approaches conformality, the masses have to vanish. We show that in this limit, the masses calculated via gauge/gravity duality satisfy expected scaling properties.
201 - J. Alanen , K. Kajantie 2009
We use gauge/gravity duality to study the thermodynamics of a field theory with asymptotic freedom in the ultraviolet and a fixed point in the infrared. We find a high temperature quark-gluon phase and a low T conformal unparticle phase. The phase tr ansition between the phases is of first order or continuous, depending on the ratio of the radii of asymptotic AdS5 spaces at T=0 and T=infinity. This is a prediction from a model of gauge/gravity duality, not yet verified on the field theory side.
We discuss the existence of a conformal phase in SU(N) gauge theories in four dimensions. In this lattice study we explore the model in the bare parameter space, varying the lattice coupling and bare mass. Simulations are carried out with three color s and twelve flavors of dynamical staggered fermions in the fundamental representation. The analysis of the chiral order parameter and the mass spectrum of the theory indicates the restoration of chiral symmetry at zero temperature and the presence of a Coulomb-like phase, depicting a scenario compatible with the existence of an infrared stable fixed point at nonzero coupling. Our analysis supports the conclusion that the onset of the conformal window for QCD-like theories is smaller than Nf=12, before the loss of asymptotic freedom at sixteen and a half flavors. We discuss open questions and future directions.
We study a gauge/gravity model for the thermodynamics of a gauge theory with one running coupling. The gravity side contains an ansatz for the metric and a scalar field, on the field theory side one starts by giving an ansatz for the beta function de scribing the scale dependence of the coupling. The model is based on relating the scale to the extra dimensional coordinate and the beta function to the gravity fields, thereby also determining the scalar field potential. We study three different forms of beta functions of increasing complexity and give semianalytic solutions describing first order or continuous transitions.
The conception of the conformal phase transiton (CPT), which is relevant for the description of non-perturbative dynamics in gauge theories, is introduced and elaborated. The main features of such a phase transition are established. In particular, it is shown that in the CPT there is an abrupt change of the spectrum of light excitations at the critical point, though the phase transition is continuous. The structure of the effective action describing the CPT is elaborated and its connection with the dynamics of the partially conserved dilatation current is pointed out. The applications of these results to QCD, models of dynamical electroweak symmetry breaking, and to the description of the phase diagram in (3+1)-dimensional $ SU(N_c)$ gauge theories are considered.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا