ترغب بنشر مسار تعليمي؟ اضغط هنا

UCAC3 pixel processing

42   0   0.0 ( 0 )
 نشر من قبل Norbert Zacharias
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Norbert Zacharias




اسأل ChatGPT حول البحث

The third US Naval Observatory (USNO) CCD Astrograph Catalog, UCAC3 was released at the IAU General Assembly on 2009 August 10. It is a highly accurate, all-sky astrometric catalog of about 100 million stars in the R = 8 to 16 magnitude range. Recent epoch observations are based on over 270,000 CCD exposures, which have been re-processed for the UCAC3 release applying traditional and new techniques. Challenges in the data have been high dark current and asymmetric image profiles due to the poor charge transfer efficiency of the detector. Non-Gaussian image profile functions were explored and correlations are found for profile fit parameters with properties of the CCD frames. These were utilized to constrain the image profile fit models and adequately describe the observed point-spread function of stellar images with a minimum number of free parameters. Using an appropriate model function, blended images of double stars could be fit successfully. UCAC3 positions are derived from 2-dimensional image profile fits with a 5-parameter, symmetric Lorentz profile model. Internal precisions of about 5 mas per coordinate and single exposure are found, which are degraded by the atmosphere to about 10 mas. However, systematic errors exceeding 100 mas are present in the x,y-data which have been corrected in the astrometric reductions following the x,y-data reduction step described here.


قيم البحث

اقرأ أيضاً

The Pan-STARRS1 Science Consortium have carried out a set of imaging surveys using the 1.4 giga-pixel GPC1 camera on the PS1 telescope. As this camera is composed of many individual electronic readouts, and covers a very large field of view, great ca re was taken to ensure that the many instrumental effects were corrected to produce the most uniform detector response possible. We present the image detrending steps used as part of the processing of the data contained within the public release of the Pan-STARRS1 Data Release 1 (DR1). In addition to the single image processing, the methods used to transform the 375,573 individual exposures into a common sky-oriented grid are discussed, as well as those used to produce both the image stack and difference combination products.
The third US Naval Observatory (USNO) CCD Astrograph Catalog, UCAC3 was released at the IAU General Assembly on 2009 August 10. It is the first all-sky release in this series and contains just over 100 million objects, about 95 million of them with p roper motions, covering about R = 8 to 16 magnitudes. Current epoch positions are obtained from the observations with the 20 cm aperture USNO Astrographs red lens, equipped with a 4k by 4k CCD. Proper motions are derived by combining these observations with over 140 ground- and space-based catalogs, including Hipparcos/Tycho and the AC2000.2, as well as unpublished measures of over 5000 plates from other astrographs. For most of the faint stars in the Southern Hemisphere the Yale/San Juan first epoch plates from the SPM program (YSJ1) form the basis for proper motions. These data are supplemented by all-sky Schmidt plate survey astrometry and photometry obtained from the SuperCOSMOS project, as well as 2MASS near-IR photometry. Major differences of UCAC3 data as compared to UCAC2 include a completely new raw data reduction with improved control over systematic errors in positions, significantly improved photometry, slightly deeper limiting magnitude, coverage of the north pole region, greater completeness by inclusion of double stars and weak detections. This of course leads to a catalog which is not as clean as UCAC2 and problem areas are outlined for the user in this paper. The positional accuracy of stars in UCAC3 is about 15 to 100 mas per coordinate, depending on magnitude, while the errors in proper motions range from 1 to 10 mas/yr depending on magnitude and observing history, with a significant improvement over UCAC2 achieved due to the re-reduced SPM data and inclusion of more astrograph plate data unavailable at the time of UCAC2.
65 - K. Hagino , K. Negishi , K. Oono 2019
We have been developing the X-ray silicon-on-insulator (SOI) pixel sensor called XRPIX for future astrophysical satellites. XRPIX is a monolithic active pixel sensor consisting of a high-resistivity Si sensor, thin SiO$_2$ insulator, and CMOS pixel c ircuits that utilize SOI technology. Since XRPIX is capable of event-driven readouts, it can achieve high timing resolution greater than $sim 10{rm ~mu s}$, which enables low background observation by adopting the anti-coincidence technique. One of the major issues in the development of XRPIX is the electrical interference between the sensor layer and circuit layer, which causes nonuniform detection efficiency at the pixel boundaries. In order to reduce the interference, we introduce a Double-SOI (D-SOI) structure, in which a thin Si layer (middle Si) is added to the insulator layer of the SOI structure. In this structure, the middle Si layer works as an electrical shield to decouple the sensor layer and circuit layer. We measured the detector response of the XRPIX with D-SOI structure at KEK. We irradiated the X-ray beam collimated with $4{rm ~mu mphi}$ pinhole, and scanned the device with $6{rm ~mu m}$ pitch, which is 1/6 of the pixel size. In this paper, we present the improvement in the uniformity of the detection efficiency in D-SOI sensors, and discuss the detailed X-ray response and its physical origins.
131 - Tim Jenness 2010
SCUBA-2 is the largest submillimetre array camera in the world and was commissioned on the James Clerk Maxwell Telescope (JCMT) with two arrays towards the end of 2009. A period of shared-risks observing was then completed and the full planned comple ment of 8 arrays, 4 at 850 microns and 4 at 450 microns, are now installed and ready to be commissioned. SCUBA-2 has 10,240 bolometers, corresponding to a data rate of 8 MB/s when sampled at the nominal rate of 200 Hz. The pipeline produces useful maps in near real time at the telescope and often publication quality maps in the JCMT Science Archive (JSA) hosted at the Canadian Astronomy Data Centre (CADC).
The GMRT Online Archive now houses over 120 terabytes of interferometric observations obtained with the GMRT since the observatory began operating as a facility in 2002. The utility of this vast data archive, likely the largest of any Indian telescop e, can be significantly enhanced if first look (and where possible, science ready) processed images can be made available to the user community. We have initiated a project to pipeline process GMRT images in the 150, 240, 325 and 610 MHz bands. The thousands of processed continuum images that we will produce will prove useful in studies of distant galaxy clusters, radio AGN, as well as nearby galaxies and star forming regions. Besides the scientific returns, a uniform data processing pipeline run on a large volume of data can be used in other interesting ways. For example, we will be able to measure various performance characteristics of the GMRT telescope and their dependence on waveband, time of day, RFI environment, backend, galactic latitude etc. in a systematic way. A variety of data products such as calibrated UVFITS data, sky images and AIPS processing logs will be delivered to users via a web-based interface. Data products will be compatible with standard Virtual Observatory protocols.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا