ترغب بنشر مسار تعليمي؟ اضغط هنا

Precise measurement of Hyper Fine Structure of positronium using sub-THz light

143   0   0.0 ( 0 )
 نشر من قبل Shoji Asai
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Positronium is an ideal system for the research of the QED, especially for the QED in bound state. The discrepancy of 3.9sigma is found recently between the measured HFS values and the QED prediction ($O(alpha^3)$). It might be due to the contribution of the unknown new physics or the systematic problems in the previous all measurements. We propose new method to measure HFS precisely and directly. A gyrotron, a novel sub-THz light source is used with a high-finesse Fabry-Perot cavity to obtain enough radiation power at 203 GHz. The present status of the optimization studies and current design of the experiment are described.



قيم البحث

اقرأ أيضاً

Positronium is an ideal system for the research of the bound state QED. The hyperfine splitting of positronium (Ps-HFS, about 203 GHz) is an important observable but all previous measurements of Ps-HFS had been measured indirectly using Zeeman splitt ing. There might be the unknown systematic errors on the uniformity of magnetic field. We are trying to measure Ps-HFS directly using sub-THz radiation. We developed an optical system to accumulate high power (about 10 kW) radiation in a Fabry-Perot resonant cavity and observed the positronium hyperfine transition for the first time.
Hyperfine splitting of positronium is an important parameter for particle physics. This paper gives experimental techniques and results of R&D studies of our experiment to observe direct hyperfine transition of ortho-positronium to para-positronium.
182 - A. Ishida , G. Akimoto , K. Kato 2009
The ground state hyperfine splitting in positronium, $Delta _{mathrm{HFS}}$, is sensitive to high order corrections of QED. A new calculation up to $O(alpha ^3)$ has revealed a $3.9 sigma$ discrepancy between the QED prediction and the experimental r esults. This discrepancy might either be due to systematic problems in the previous experiments or to contributions beyond the Standard Model. We propose an experiment to measure $Delta_{mathrm{HFS}}$ employing new methods designed to remedy the systematic errors which may have affected the previous experiments. Our experiment will provide an independent check of the discrepancy. The measurement is in progress and a preliminary result of $Delta_{mathrm{HFS}} = 203.399 pm 0.029 mathrm{GHz} (143 mathrm{ppm})$ has been obtained. A measurement with a precision of O(1) ppm is expected within a few years.
283 - A. Ishida , Y. Sasaki , G. Akimoto 2011
Positronium is an ideal system for the research of the quantum electrodynamics (QED) in bound state. The hyperfine splitting (HFS) of positronium, $Delta_{mathrm{HFS}}$, gives a good test of the bound state calculations and probes new physics beyond the Standard Model. A new method of QED calculations has revealed the discrepancy by 15,ppm (3.9$sigma$) of $Delta_{mathrm{HFS}}$ between the QED prediction and the experimental average. There would be possibility of new physics or common systematic uncertainties in the previous all experiments. We describe a new experiment to reduce possible systematic uncertainties and will provide an independent check of the discrepancy. We are now taking data and the current result of $Delta_{mathrm{HFS}} = 203.395,1 pm 0.002,4 (mathrm{stat.}, 12,mathrm{ppm}) pm 0.001,9 (mathrm{sys.}, 9.5,mathrm{ppm}),mathrm{GHz} $ has been obtained so far. A measurement with a precision of $O$(ppm) is expected within a year.
534 - S.Asai , Y.Kataoka , T.Kobayashi 2008
Positronium is an ideal system for the research of the bound state QED. New precise measurement of orthopositronium decay rate has been performed with an accuracy of 150 ppm, and the result combined with the last three is 7.0401 +- 0.0007 mu s^-1. It is the first result to validate the 2nd order correction. The Hyper Fine Splitting of positronium is sensitive to the higher order corrections of the QED prediction and also to the new physics beyond Standard Model via the quantum oscillation into virtual photon. The discrepancy of 3.5 sigma is found recently between the measured values and the QED prediction (O(alpha^3)). It might be due to the contribution of the new physics or the systematic problems in the previous measurements: (non-thermalized Ps and non-uniformity of the magnetic field). We propose new methods to measure HFS precisely without the these uncertainties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا