ترغب بنشر مسار تعليمي؟ اضغط هنا

Precision determination of the dpi -> NN transition strength at threshold

61   0   0.0 ( 0 )
 نشر من قبل Detlev Gotta
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

An unusual but effective way to determine at threshold the dpi -> NN transition strength is to exploit the hadronic ground-state broadening in pionic deuterium, accessible by x-ray spectroscopy. The broadening is dominated by the true absorption channel dpi- -> nn, which is related to s-wave pion production pp -> dpi+ by charge symmetry and detailed balance. Using the exotic atom circumvents the problem of Coulomb corrections to the cross section as necessary in the production experiments. Our dedicated measurement finds (1171+23/-49) meV for the broadening yielding (252+5/-11) mub.

قيم البحث

اقرأ أيضاً

The form factor of the electromagnetic excitation of $^{12}$C to its 2$^+_1$ state was measured at extremely low momentum transfers in an electron scattering experiment at the S-DALINAC. A combined analysis with the world form factor data results in a reduced transition strength $B(E2; 2^+_1rightarrow 0^+_1) =7.63(19)$ e$^2$fm$^4$ with an accuracy improved to 2.5%. In-Medium-No Core Shell Model results with interactions derived from chiral effective field theory are capable to reproduce the result. A quadrupole moment $Q(2^+_1) = 5.97(30)$ efm$^2$ can be extracted from the strict correlation with the $B((E2)$ strength emerging in the calculations.
The reaction pp -> dpi+eta has been measured at a beam energy of T=2.65 GeV (p=3.46 GeV/c) using the ANKE spectrometer at COSY-Juelich. The missing mass distribution of the detected dpi+ pairs exhibits a peak around the eta mass on top of a strong ba ckground of multi-pion pp -> dpi+(n(pi)) events. The differential cross section d^4(sigma)/d(Omega_d)d(Omega_pi+)d(p_d)d(p_pi+) for the reaction pp -> dpi+eta has been determined model independently for two regions of phase space. Employing a dynamical model for the a0+ production allows one then to deduce a total cross section of sigma(pp -> da0+ -> dpi+eta)=(1.1 +/- 0.3_(stat) +/- 0.7_(syst)) microbarn for the production of pi+eta via the scalar a0+(980) resonance and sigma(pp -> dpi+eta) = (3.5 +/- 0.3_(stat) +/- 1.0_(syst)) microbarn for the non-resonant production. Using the same model as for the interpretation of recent results from ANKE for the reaction pp -> dK+(bar(K0)), the ratio of the total cross sections is sigma(pp -> d(K+(bar(K0)))_(L=0))/sigma(pp -> da0+ -> dpi+eta) = 0.029 +/- 0.008_(stat) +/- 0.009_(syst), which is in agreement with branching ratios in the literature.
New results are reported from a measurement of $pi^0$ electroproduction near threshold using the $p(e,e^{prime} p)pi^0$ reaction. The experiment was designed to determine precisely the energy dependence of $s-$ and $p-$wave electromagnetic multipoles as a stringent test of the predictions of Chiral Perturbation Theory (ChPT). The data were taken with an electron beam energy of 1192 MeV using a two-spectrometer setup in Hall A at Jefferson Lab. For the first time, complete coverage of the $phi^*_{pi}$ and $theta^*_{pi}$ angles in the $p pi^0$ center-of-mass was obtained for invariant energies above threshold from 0.5 MeV up to 15 MeV. The 4-momentum transfer $Q^2$ coverage ranges from 0.05 to 0.155 (GeV/c)$^2$ in fine steps. A simple phenomenological analysis of our data shows strong disagreement with $p-$wave predictions from ChPT for $Q^2>0.07$ (GeV/c)$^2$, while the $s-$wave predictions are in reasonable agreement.
Excited states in $^{58,60,62}$Ni were populated via inelastic proton scattering at the Australian National University as well as via inelastic neutron scattering at the University of Kentucky Accelerator Laboratory. The Super-e electron spectrometer and the CAESAR Compton-suppressed HPGe array were used in complementary experiments to measure conversion coefficients and $delta(E2/M1)$ mixing ratios, respectively, for a number of $2^+ rightarrow 2^+$ transitions. The data obtained were combined with lifetimes and branching ratios to determine $E0$, $M1$, and $E2$ transition strengths between $2^+$ states. The $E0$ transition strengths between $0^+$ states were measured using internal conversion electron spectroscopy and compare well to previous results from internal pair formation spectroscopy. The $E0$ transition strengths between the lowest-lying $2^+$ states were found to be consistently large for the isotopes studied.
New precise results of a measurement of the elastic electron-proton scattering cross section performed at the Mainz Microtron MAMI are presented. About 1400 cross sections were measured with negative four-momentum transfers squared up to Q^2=1 (GeV/c )^2 with statistical errors below 0.2%. The electric and magnetic form factors of the proton were extracted by fits of a large variety of form factor models directly to the cross sections. The form factors show some features at the scale of the pion cloud. The charge and magnetic radii are determined to be r_E=0.879(5)(stat.)(4)(syst.)(2)(model)(4)(group) fm and r_M=0.777(13)(stat.)(9)(syst.)(5)(model)(2)(group) fm.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا