ترغب بنشر مسار تعليمي؟ اضغط هنا

Space-Time Localization of Inner Heliospheric Plasma Turbulence Using Multiple Spacecraft Radio Links

36   0   0.0 ( 0 )
 نشر من قبل Adam Richie-Halford
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Radio remote sensing of the heliosphere using spacecraft radio signals has been used to study the near-sun plasma in and out of the ecliptic, close to the sun, and on spatial and temporal scales not accessible with other techniques. Studies of space-time variations in the inner solar wind are particularly timely because of the desire to understand and predict space weather, which can disturb satellites and systems at 1AU and affect human space exploration. Here we demonstrate proof-of-concept of a new radio science application for spacecraft radio science links. The differing transfer functions of plasma irregularities to spacecraft radio up- and downlinks can be exploited to localize plasma scattering along the line of sight. We demonstrate the utility of this idea using Cassini radio data taken in 2001-2002. Under favorable circumstances we demonstrate how this technique, unlike other remote sensing methods, can determine center-of-scattering position to within a few thousandths of an AU and thickness of scattering region to less than about 0.02 AU. This method, applied to large data sets and used in conjunction with other solar remote sensing data such as white light data, has space weather application in studies of inhomogeneity and nonstationarity in the near-sun solar wind.

قيم البحث

اقرأ أيضاً

This white paper submitted for 2020 Decadal Assessment of Plasma Science concerns the importance of multi-spacecraft missions to address fundamental questions concerning plasma turbulence. Plasma turbulence is ubiquitous in the universe, and it is re sponsible for the transport of mass, momentum, and energy in such diverse systems as the solar corona and wind, accretion discs, planet formation, and laboratory fusion devices. Turbulence is an inherently multi-scale and multi-process phenomenon, coupling the largest scales of a system to sub-electron scales via a cascade of energy, while simultaneously generating reconnecting current layers, shocks, and a myriad of instabilities and waves. The solar wind is humankinds best resource for studying the naturally occurring turbulent plasmas that permeate the universe. Since launching our first major scientific spacecraft mission, Explorer 1, in 1958, we have made significant progress characterizing solar wind turbulence. Yet, due to the severe limitations imposed by single point measurements, we are unable to characterize sufficiently the spatial and temporal properties of the solar wind, leaving many fundamental questions about plasma turbulence unanswered. Therefore, the time has now come wherein making significant additional progress to determine the dynamical nature of solar wind turbulence requires multi-spacecraft missions spanning a wide range of scales simultaneously. A dedicated multi-spacecraft mission concurrently covering a wide range of scales in the solar wind would not only allow us to directly determine the spatial and temporal structure of plasma turbulence, but it would also mitigate the limitations that current multi-spacecraft missions face, such as non-ideal orbits for observing solar wind turbulence. Some of the fundamentally important questions that can only be addressed by in situ multipoint measurements are discussed.
83 - S. S. Larsen 2019
We present new deep imaging of the central regions of the remote globular cluster NGC 2419, obtained with the F343N and F336W filters of HST/WFC3. The new data are combined with archival imaging to constrain nitrogen and helium abundance variations w ithin the cluster. We find a clearly bimodal distribution of the nitrogen-sensitive F336W-F343N colours of red giants, from which we estimate that about 55% of the giants belong to a population with about normal (field-like) nitrogen abundances (P1), while the remaining 45% belong to a nitrogen-rich population (P2). On average, the P2 stars are more He-rich than the P1 stars, with an estimated mean difference of Delta Y = 0.05, but the P2 stars exhibit a significant spread in He content and some may reach Delta Y = 0.13. A smaller He spread may be present also for the P1 stars. Additionally, stars with spectroscopically determined low [Mg/Fe] ratios ([Mg/Fe]<0) are generally associated with P2. We find the P2 stars to be slightly more centrally concentrated in NGC 2419 with a projected half-number radius of about 10% less than for the P1 stars, but the difference is not highly significant (p=0.05). We find evidence of rotation for the P1 stars, whereas the results are inconclusive for the P2 stars, which are consistent with no rotation as well as the same average rotation found for the P1 stars. Because of the long relaxation time scale of NGC 2419, the radial trends and kinematic properties of the populations are expected to be relatively unaffected by dynamical evolution. Hence, they provide constraints on formation scenarios for multiple populations, which must account not only for the presence of He spreads within sub-populations identified via CNO variations, but also for the relatively modest differences in the spatial distributions and kinematics of the populations.
We report the analysis of high temporal resolution ground and space based photometric observations of SZ Lyncis, a binary star one of whose components is a high amplitude $delta$ Scuti. UBVR photometric observations were obtained from Mt. Abu Infrare d Observatory and Fairborn Observatory; archival observations from the WASP project were also included. Furthermore, the continuous, high quality light curve from the TESS project was extensively used for the analysis. The well resolved light curve from TESS reveals the presence of 23 frequencies with four independent modes, 13 harmonics of the main pulsation frequency of 8.296943$pm$0.000002 d$^{-1}$ and their combinations. The frequency 8.296 d$^{-1}$ is identified as the fundamental radial mode by amplitude ratio method and using the estimated pulsation constant. The frequencies 14.535 d$^{-1}$, 32.620 d$^{-1}$ and 4.584 d$^{-1}$ are newly discovered for SZ Lyn. Out of these three, 14.535 d$^{-1}$ and 32.620 d$^{-1}$ are identified as non-radial lower order p-modes and 4.584 d$^{-1}$ could be an indication of a g-mode in a $delta$ Scuti star. As a result of frequency determination and mode identification, the physical parameters of SZ Lyn were revised by optimizations of stellar pulsation models with the observed frequencies. The theoretical models correspond to 7500 K $le $T$_{rm eff}$ $le$ 7800 K, log(g)=3.81$pm$0.06. The mass of SZ Lyn was estimated to be close to 1.7--2.0 M$_odot$ using evolutionary sequences. The period-density relation estimates a mean density $rho$ of 0.1054$pm$0.0016 g cm$^{-3}$
Aims. The phase scintillation of the European Space Agencys (ESA) Venus Express (VEX) spacecraft telemetry signal was observed at X-band (lambda = 3.6 cm) with a number of radio telescopes of the European VLBI Network (EVN) in the period 2009-2013. M ethods. We found a phase fluctuation spectrum along the Venus orbit with a nearly constant spectral index of -2.42 +/-0.25 over the full range of solar elongation angles from 0{deg} to 45{deg}, which is consistent with Kolmogorov turbulence. Radio astronomical observations of spacecraft signals within the solar system give a unique opportunity to study the temporal behaviour of the signals phase fluctuations caused by its propagation through the interplanetary plasma and the Earths ionosphere. This gives complementary data to the classical interplanetary scintillation (IPS) study based on observations of the flux variability of distant natural radio sources. Results. We present here our technique and the results on IPS. We compare these with the total electron content (TEC) for the line of sight through the solar wind. Finally, we evaluate the applicability of the presented technique to phase-referencing Very Long Baseline Interferometry (VLBI) and Doppler observations of currently operational and prospective space missions.
The Eulerian space-time correlation of strong Magnetohydrodynamic (MHD) turbulence in strongly magnetized plasmas is investigated by means of direct numerical simulations of Reduced MHD turbulence and phenomenological modeling. Two new important resu lts follow from the simulations: 1) counter-propagating Alfvenic fluctuations at a each scale decorrelate in time at the same rate in both balanced and imbalanced turbulence; and 2) the scaling with wavenumber of the decorrelation rate is consistent with pure hydrodynamic sweeping of small-scale structures by the fluctuating velocity of the energy-containing scales. An explanation of the simulation results is proposed in the context of a recent phenomenological MHD model introduced by Bourouaine and Perez 2019 (BP19) when restricted to the strong turbulence regime. The model predicts that the two-time power spectrum exhibits an universal, self-similar behavior that is solely determined by the probability distribution function of random velocities in the energy-containing range. Understanding the scale-dependent temporal evolution of the space-time turbulence correlation as well as its associated universal properties is essential in the analysis and interpretation of spacecraft observations, such as the recently launched Parker Solar Probe (PSP).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا