ﻻ يوجد ملخص باللغة العربية
In this paper we compute the generating function of modular, $k$-noncrossing diagrams. A $k$-noncrossing diagram is called modular if it does not contains any isolated arcs and any arc has length at least four. Modular diagrams represent the deformation retracts of RNA pseudoknot structures cite{Stadler:99,Reidys:07pseu,Reidys:07lego} and their properties reflect basic features of these bio-molecules. The particular case of modular noncrossing diagrams has been extensively studied cite{Waterman:78b, Waterman:79,Waterman:93, Schuster:98}. Let ${sf Q}_k(n)$ denote the number of modular $k$-noncrossing diagrams over $n$ vertices. We derive exact enumeration results as well as the asymptotic formula ${sf Q}_k(n)sim c_k n^{-(k-1)^2-frac{k-1}{2}}gamma_{k}^{-n}$ for $k=3,..., 9$ and derive a new proof of the formula ${sf Q}_2(n)sim 1.4848, n^{-3/2},1.8489^{-n}$ cite{Schuster:98}.
In this paper we enumerate $k$-noncrossing tangled-diagrams. A tangled-diagram is a labeled graph whose vertices are $1,...,n$ have degree $le 2$, and are arranged in increasing order in a horizontal line. Its arcs are drawn in the upper halfplane wi
A set partition is said to be $(k,d)$-noncrossing if it avoids the pattern $12... k12... d$. We find an explicit formula for the ordinary generating function of the number of $(k,d)$-noncrossing partitions of ${1,2,...,n}$ when $d=1,2$.
In this paper we study $k$-noncrossing matchings. A $k$-noncrossing matching is a labeled graph with vertex set ${1,...,2n}$ arranged in increasing order in a horizontal line and vertex-degree 1. The $n$ arcs are drawn in the upper halfplane subject
In this paper we present a selfcontained analysis and description of the novel {it ab initio} folding algorithm {sf cross}, which generates the minimum free energy (mfe), 3-noncrossing, $sigma$-canonical RNA structure. Here an RNA structure is 3-nonc
For each skew shape we define a nonhomogeneous symmetric function, generalizing a construction of Pak and Postnikov. In two special cases, we show that the coefficients of this function when expanded in the complete homogeneous basis are given in ter