ﻻ يوجد ملخص باللغة العربية
Eleven density functionals are compared with regard to their performance for the lattice constants of solids. We consider standard functionals, such as the local-density approximation and the Perdew-Burke-Ernzerhof (PBE) generalized-gradient approximation (GGA), as well as variations of PBE GGA, such as PBEsol and similar functionals, PBE-type functionals employing a tighter Lieb-Oxford bound, and combinations thereof. Several of these variations are proposed here for the first time. On a test set of 60 solids we perform a system-by-system analysis for selected functionals and a full statistical analysis for all of them. The impact of restoring the gradient expansion and of tightening the Lieb-Oxford bound is discussed, and confronted with previous results obtained from other codes, functionals or test sets. No functional is uniformly good for all investigated systems, but surprisingly, and pleasingly, the simplest possible modifications to PBE turn out to have the most beneficial effect on its performance. The atomization energy of molecules was also considered and on a testing set of six molecules, we found that the PBE functional is clearly the best, the others leading to strong overbinding.
One of the standard generalized-gradient approximations (GGAs) in use in modern electronic-structure theory, PBE, and a recently proposed modification designed specifically for solids, PBEsol, are identified as particular members of a family of funct
We assess the performance of recent density functionals for the exchange-correlation energy of a nonmolecular solid, by applying accurate calculations with the GAUSSIAN, BAND, and VASP codes to a test set of 24 solid metals and non-metals. The functi
We propose a generalized gradient approximation (GGA) for the angle- and system-averaged exchange-correlation hole of a many-electron system. This hole, which satisfies known exact constraints, recovers the PBEsol (Perdew-Burke-Ernzerhof for solids)
We derive a dielectric-dependent hybrid functional which accurately describes the electronic properties of heterogeneous interfaces and surfaces, as well as those of three- and two-dimensional bulk solids. The functional, which does not contain any a
The nonlocal van der Waals (NL-vdW) functionals [Dion et al., Phys. Rev. Lett. 92, 246401 (2004)] are being applied more and more frequently in solid-state physics, since they have shown to be much more reliable than the traditional semilocal functio