ترغب بنشر مسار تعليمي؟ اضغط هنا

A MAD view of Trumpler 14

263   0   0.0 ( 0 )
 نشر من قبل Hugues Sana
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present adaptive optics (AO) near-infrared observations of the core of the Tr 14 cluster in the Carina region obtained with the ESO multi-conjugate AO demonstrator, MAD. Our campaign yields AO-corrected observations with an image quality of about 0.2 arcsec across the 2 arcmin field of view, which is the widest AO mosaic ever obtained. We detected almost 2000 sources spanning a dynamic range of 10 mag. The pre-main sequence (PMS) locus in the colour-magnitude diagram is well reproduced by Palla & Stahler isochrones with an age of 3 to 5 1E+05 yr, confirming the very young age of the cluster. We derive a very high (deprojected) central density n0~4.5(+/-0.5) times 10^4 pc^-3 and estimate the total mass of the cluster to be about ~4.3^{+3.3}_{-1.5} times 10^3 Msun, although contamination of the field of view might have a significant impact on the derived mass. We show that the pairing process is largely dominated by chance alignment so that physical pairs are difficult to disentangle from spurious ones based on our single epoch observation. Yet, we identify 150 likely bound pairs, 30% of these with a separation smaller than 0.5 arcsec (~1300AU). We further show that at the 2-sigma level massive stars have more companions than lower-mass stars and that those companions are respectively brighter on average, thus more massive. Finally, we find some hints of mass segregation for stars heavier than about 10 Msun. If confirmed, the observed degree of mass segregation could be explained by dynamical evolution, despite the young age of the cluster.

قيم البحث

اقرأ أيضاً

Trumpler 16 is a well--known rich star cluster containing the eruptive supergiant $eta$ Carinae and located in the Carina star-forming complex. In the context of the Chandra Carina Complex Project, we study Trumpler 16 using new and archival X-ray da ta. A revised X-ray source list of the Trumpler 16 region contains 1232 X-ray sources including 1187 likely Carina members. These are matched to 1047 near-infrared counterparts detected by the HAWK-I instrument at the VLT allowing for better selection of cluster members. The cluster is irregular in shape. Although it is roughly circular, there is a high degree of sub-clustering, no noticeable central concentration and an extension to the southeast. The high--mass stars show neither evidence of mass segregation nor evidence of strong differential extinction. The derived power-law slope of the X-ray luminosity function for Trumpler 16 reveals a much steeper function than the Orion Nebula Cluster implying different ratio of solar- to higher-mass stars. We estimate the total Trumpler 16 pre-main sequence population to be > 6500 Class II and Class III X-ray sources. An overall K-excess disk frequency of ~ 8.9% is derived using the X-ray selected sample, although there is some variation among the sub-clusters, especially in the Southeastern extension. X-ray emission is detected from 29 high--mass stars with spectral types between B2 and O3.
We present the first extensive spectroscopic study of the global population in star clusters Trumpler~16, Trumpler~14 and Collinder~232 in the Carina Nebula, using data from the Gaia-ESO Survey, down to solar-mass stars. In addition to the standard h omogeneous Survey data reduction, a special processing was applied here because of the bright nebulosity surrounding Carina stars. We find about four hundred good candidate members ranging from OB types down to slightly sub-solar masses. About one-hundred heavily-reddened early-type Carina members found here were previously unrecognized or poorly classified, including two candidate O stars and several candidate Herbig Ae/Be stars. Their large brightness makes them useful tracers of the obscured Carina population. The spectroscopically-derived temperatures for nearly 300 low-mass members allows the inference of individual extinction values, and the study of the relative placement of stars along the line of sight. We find a complex spatial structure, with definite clustering of low-mass members around the most massive stars, and spatially-variable extinction. By combining the new data with existing X-ray data we obtain a more complete picture of the three-dimensional spatial structure of the Carina clusters, and of their connection to bright and dark nebulosity, and UV sources. The identification of tens of background giants enables us also to determine the total optical depth of the Carina nebula along many sightlines. We are also able to put constraints on the star-formation history of the region, with Trumpler~14 stars found to be systematically younger than stars in other sub-clusters. We find a large percentage of fast-rotating stars among Carina solar-mass members, which provide new constraints on the rotational evolution of pre-main-sequence stars in this mass range.
118 - M.J Rain , G. Carraro , J. Ahumada 2020
We present a study, based on Gaia DR2, of the population of blue straggler stars (BSS) in the open clusters Trumpler 5, Trumpler 20, and NGC 2477. All candidates were selected according to their position in the color-magnitude diagram, to their prope r motion components, and to their parallax. We also looked for yellow stragglers, i.e., possible evolved blue stragglers. We found that Trumpler 5 hosts a large BSS population, which allowed us to analyze their radial distribution as a probe of the clusters dynamical status. The BSS distribution was compared with that of red giant branch stars (RGB) to evaluate mass segregation. Our results indicate that blue straggler stars are not more centrally concentrated than RGB stars in any of the clusters. The radial distribution of BSS in Trumpler 5 is flat. Additionally, using a multi-epoch radial velocity survey conducted with the high-resolution spectrograph FLAMES/GIRAFFE at VLT, we measured the radial velocities of a sample of stragglers, for the sake of comparison with the mean radial velocity and the velocity dispersion of the clusters. Based on the radial velocity variations for different epochs, we roughly classified these stars as possible close-or long-period binaries.
We investigate the physical conditions of the CO gas near the young star cluster, Trumpler 14 of the Carina Nebula. The observations presented in this work are taken with the Fourier Transform Spectrometer (FTS) of the Spectral and Photometric Imagin g REceiver (SPIRE) onboard the Herschel Space Observatory. Our field of view covers the edge of a cavity carved by Trumpler 14 about $1,mathrm{Myr}$ ago and marks the transition from HII regions to photo-dissociation regions. With the state-of-the-art Meudon PDR code, we successfully derive the physical conditions, which include the thermal pressure ($P$) and the scaling factor of radiation fields ($G_{mathrm{UV}}$), from the observed CO spectral line energy distributions~(SLEDs) in the observed region. The derived $G_{mathrm{UV}}$ values generally show an excellent agreement with the UV radiation fields created by nearby OB-stars and thus confirm that the main excitation source of the observed CO emission are the UV-photons provided by the massive stars. The derived thermal pressure is between $0.5-3,times,10^{8},mathrm{K,cm^{-3}}$ with the highest values found along the ionization front in Car I-E region facing Trumpler 14, hinting that the cloud structure is similar to the recent observations of the Orion Bar. Comparing the derived thermal pressure with the radiation fields, we report the first observationally-derived and spatially-resolved $P sim 2times10^4,G_{mathrm{UV}}$ relationship. As direct comparisons of the modeling results to the observed $^{13}mathrm{CO}$, [OI] $63,mathrm{mu m}$, and [CII] $158,mathrm{mu m}$ intensities are not straightforward, we urge the readers to be cautious when constraining the physical conditions of PDRs with combinations of $^{12}mathrm{CO}$, $^{13}mathrm{CO}$, [CI], [OI] $63,mathrm{mu m}$, and [CII] $158,mathrm{mu m}$ observations.
Symbiotic stars display absorption lines of a cool red giant together with emission lines of a nebula ionized by a hotter star, indicative of an active binary star system in which mass transfer is occurring. PIONIER at the VLT has been used to combin e the light of four telescopes at a time to study in unprecedented detail how mass is transferred in symbiotic stars. The results of a mini-survey of symbiotic stars with PIONIER are summarised and some tentative general results about the role of Roche lobe overflow are presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا