ترغب بنشر مسار تعليمي؟ اضغط هنا

Multiband Photopolarimetric Monitoring of the Outburst of the Blazar 3C~454.3 in 2007

126   0   0.0 ( 0 )
 نشر من قبل Mahito Sasada Mr.
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on optical-near-infrared photopolarimetric observations of a blazar 3C 454.3 over 200 d. The object experienced an optical outburst in July 2007. This outburst was followed by a short state fainter than $V=15.2$ mag lasting $sim 25$ d. The object, then, entered an active state during which we observed short flares having a timescale of 3-10 d. The object showed two types of features in the color-magnitude relationship. One is a bluer-when-brighter trend in the outburst state, and the other is a redder-when-brighter trend in the faint state. These two types of features suggest a contribution of a thermal emission to the observed flux, as suspected in previous studies. Our polarimetric observation detected two episodes of the rotation of the polarization vector. The first one was a counterclockwise rotation in the $QU$ plane during the outburst state. After this rotation event of the polarization vector, the object entered a rapidly fading stage. The second one was seen in a series of flares during the active state. Each flare had a specific position angle of polarization, and it apparently rotated clockwise from the first to the last flares. Thus, the object exhibited rotations of the polarization vector in opposite directions. We estimated a decay timescale of the short flares during the active state, and then calculated an upper limit of the strength of the magnetic field, $B$=0.2 G, assuming a typical beaming factor of blazars, $delta=20$. This upper limit of $B$ is smaller than those previously estimated from spectral analysis.



قيم البحث

اقرأ أيضاً

314 - E. Benitez 2009
We performed an optical spectroscopic monitoring of the blazar 3C 454.3 from September 2003 to July 2008. Sixteen optical spectra were obtained during different runs, which constitute the first spectroscopic monitoring done in the rest-frame UV regio n (z=0.859). An overall flux variation of the MgII (2800 A) by a factor ~ 3 was observed, while the corresponding UV continuum (F_cont at 3000 A) changed by a factor ~ 14. The MgII emission lines respond proportionally to the continuum variations when the source is in a low-activity state. In contrast, near the optical outbursts detected in 2005 and 2007, the MgII emission lines showed little response to the continuum flux variations. During the monitored period the UV FeII flux changed by a factor ~ 6 and correlated with F_cont (r = 0.92). A negative correlation between EW(Mg II) and F_cont was found, i.e. the so-called Intrinsic Baldwin Effect.
We report on the second AGILE multiwavelength campaign of the blazar 3C 454.3 during the first half of December 2007. This campaign involved AGILE, Spitzer, Swift,Suzaku,the WEBT consortium,the REM and MITSuME telescopes,offering a broad band coverag e that allowed for a simultaneous sampling of the synchrotron and inverse Compton (IC) emissions.The 2-week AGILE monitoring was accompanied by radio to optical monitoring by WEBT and REM and by sparse observations in mid-Infrared and soft/hard X-ray energy bands performed by means of Target of Opportunity observations by Spitzer, Swift and Suzaku, respectively.The source was detected with an average flux of~250x10^{-8}ph cm^-2s^-1 above 100 MeV,typical of its flaring states.The simultaneous optical and gamma-ray monitoring allowed us to study the time-lag associated with the variability in the two energy bands, resulting in a possible ~1-day delay of the gamma-ray emission with respect to the optical one. From the simultaneous optical and gamma-ray fast flare detected on December 12, we can constrain the delay between the gamma-ray and optical emissions within 12 hours. Moreover, we obtain three Spectral Energy Distributions (SEDs) with simultaneous data for 2007 December 5, 13, 15, characterized by the widest multifrequency coverage. We found that a model with an external Compton on seed photons by a standard disk and reprocessed by the Broad Line Regions does not describe in a satisfactory way the SEDs of 2007 December 5, 13 and 15. An additional contribution, possibly from the hot corona with T=10^6 K surrounding the jet, is required to account simultaneously for the softness of the synchrotron and the hardness of the inverse Compton emissions during those epochs.
113 - G. Ghisellini 2007
In July 2007, the blazar 3C 454.3 underwent a flare in the optical, reaching R~13 on July 19. Then the optical flux decreased by one magnitude, being R~14 when the source was detected by the gamma-ray satellite AGILE, that observed the source on July 24-30. At the same time, the Swift satellite performed a series of snapshots. We can construct the simultaneous spectral energy distribution using optical, UV, X-ray and gamma-ray data. These shows that an increased gamma-ray flux is accompanied by a weaker optical/X-ray flux with respect to the flare observed in the Spring 2005 by INTEGRAL and Swift. This confirms earlier suggestions about the behaviour of the jet of 3C 454.3.
The gamma-ray-detected blazar 3C 454.3 exhibits dramatic flux and polarization variations in the optical and near-infrared bands. In December 2010, the object emitted a very bright outburst. We monitored it for approximately four years (including the 2010 outburst) by optical and near-infrared photopolarimetry. During the 2010 outburst, the object emitted two rapid, redder brightenings, at which the polarization degrees (PDs) in both bands increased significantly and the bands exhibited a frequency-dependent polarization. The observed frequency-dependent polarization leads us to propose that the polarization vector is composed of two vectors. Therefore, we separate the observed polarization vectors into short and long-term components that we attribute to the emissions of the rapid brightenings and the outburst that varied the timescale of days and months, respectively. The estimated PD of the short-term component is greater than the maximum observed PD and is close to the theoretical maximum PD. We constrain the bulk Lorentz factors and inclination angles between the jet axis and the line of sight from the estimated PDs. In this case, the inclination angle of the emitting region of short-term component from the first rapid brightening should be equal to 90$^{circ}$, because the estimated PD of the short-term component was approximately equal to the theoretical maximum PD. Thus, the Doppler factor at the emitting region of the first rapid brightening should be equal to the bulk Lorentz factor.
We present the gamma-ray data of the extraordinary flaring activity above 100 MeV from the flat spectrum radio quasar 3C 454.3 detected by AGILE during the month of December 2009. 3C 454.3, that has been among the most active blazars of the FSRQ type since 2007, was detected in the gamma-ray range with a progressively rising flux since November 10, 2009. The gamma-ray flux reached a value comparable with that of the Vela pulsar on December 2, 2009. Remarkably, between December 2 and 3, 2009 the source more than doubled its gamma-ray emission and became the brightest gamma-ray source in the sky with a peak flux of F_{gamma,p} = (2000 pm 400) x 10^-8 ph cm^-2 s^-1 for a 1-day integration above 100 MeV. The gamma-ray intensity decreased in the following days with the source flux remaining at large values near F simeq (1000 pm 200) x 10^-8 ph cm^-2 s^-1 for more than a week. This exceptional gamma-ray flare dissipated among the largest ever detected intrinsic radiated power in gamma-rays above 100 MeV (L_{gamma, source, peak} simeq 3 x 10^46 erg s^-1, for a relativistic Doppler factor of {delta} simeq 30). The total isotropic irradiated energy of the month-long episode in the range 100 MeV - 3 GeV is E_{gamma,iso} simeq 10^56 erg. We report the intensity and spectral evolution of the gamma-ray emission across the flaring episode. We briefly discuss the important theoretical implications of our detection.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا