ترغب بنشر مسار تعليمي؟ اضغط هنا

The D-bar{D} matter in Waleckas mean field theory

34   0   0.0 ( 0 )
 نشر من قبل Romulo Silva
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the mesons matter D-bar{D} in the framework of sigma and omega meson exchange model using Waleckas mean field theory. We choose the equal number of D and anti-D meson then we get <omega^0>=0 and the field sigma exhibits a critical temperature around 1.2 GeV. We investigate effective mass, pressure, energy density and energy per pair. We conclude that this matter is a gas and these results are not favorable for the existence of D-bar{D} bound state. Note: in arXiv:1211.5505 this interpretation has been updated where these results are favorable for the existence of $D-bar{D}$ bound state.

قيم البحث

اقرأ أيضاً

In this work, we preform a systematic investigation about hidden heavy and doubly heavy molecular states from the $D^{(*)}bar{D}^{(*)}/B^{(*)}bar{B}^{(*)}$ and $D^{(*)}D^{(*)}/bar{B}^{(*)}bar{B}^{(*)}$ interactions in the quasipotential Bethe-Salpete r equation (qBSE) approach. With the help of the Lagrangians with heavy quark and chiral symmetries, interaction potentials are constructed within the one-boson-exchange model in which we include the $pi$, $eta$, $rho$, $omega$ and $sigma$ exchanges, as well as $J/psi$ or $Upsilon$ exchange. Possible bound states from the interactions considered are searched for as the pole of scattering amplitude. The results suggest that experimentally observed states, $Z_c(3900)$, $Z_c(4020)$, $Z_b(10610)$, and $Z_b(10650)$, can be related to the $Dbar{D}^{*}$, $D^*bar{D}^{*}$, $Bbar{B}^{*}$, and $B^*bar{B}^{*}$ interactions with quantum numbers $I^G(J^P)=1^+(1^{+})$, respectively. The $Dbar{D}^{*}$ interaction is also attractive enough to produce a pole with $0^+(0^+)$ which is related to the $X(3872)$. Within the same theoretical frame, the existence of $Dbar{D}$ and $Bbar{B}$ molecular states with $0(0^+)$ are predicted. The possible $D^*bar{D}^*$ molecular states with $0(0^+, 1^+, 2^+)$ and $1(0^+)$ and their bottom partners are also suggested by the calculation. In the doubly heavy sector, no bound state is produced from the $DD/bar{B}bar{B}$ interaction while a bound state is found with $0(1^+)$ from $DD^*/bar{B}bar{B}^*$ interaction. The $D^*D^*/bar{B}^*bar{B}^*$ interaction produces three molecular states with $0(1^+)$, $0(2^+)$ and $1(2^+)$.
Besides being important to determine Standard Model parameters such as the CKM matrix elements $|V_{cb}|$ and $|V_{ub}|$, semileptonic $B$ decays seem also promising to reveal new physics (NP) phenomena, in particular in connection with the possibili ty of uncovering lepton flavour universality (LFU) violating effects. In this view, it could be natural to connect the tensions in the inclusive versus exclusive determinations of $|V_{cb}|$ to the anomalies in the ratios $R(D^{(*)})$ of decay rates into $tau$ vs $mu, e$. However, the question has been raised about the role of the parametrization of the hadronic $B to D^{(*)}$ form factors in exclusive $B$ decay modes. We focus on the fully differential angular distributions of $bar B to D^* ell^-{bar u}_ell$ with $D^* to D pi$ or $D^* to D gamma$, the latter mode being important in the case of $B_s to D_s^*$ decays. We show that the angular coefficients in the distributions can be used to scrutinize the role of the form factor parametrization and to pin down deviations from SM. As an example of a NP scenario, we include a tensor operator in the $b to c$ semileptonic effective Hamiltonian, and discuss how the angular coefficients allow to construct observables sensitive to this structure, also defining ratios useful to test LFU.
89 - S. Sakai , L. Roca , E. Oset 2017
We evaluate the s-wave interaction of pseudoscalar and vector mesons with both charm and beauty to investigate the possible existence of molecular $BD$, $B^*D$, $BD^*$, $B^*D^*$, $Bbar D$, $B^*bar D$, $Bbar D^*$ or $B^* bar D^*$ meson states. The sca ttering amplitude is obtained implementing unitarity starting from a tree level potential accounting for the dominant vector meson exchange. The diagrams are evaluated using suitable extensions to the heavy flavor sector of the hidden gauge symmetry Lagrangians involving vector and pseudoscalar mesons{, respecting heavy quark spin symmetry}. We obtain bound states at energies above 7 GeV for $BD$ ($J^P=0^+$), $B^*D$ ($1^+$), $BD^*$ ($1^+$) and $B^*D^*$ ($0^+$, $1^+$, $2^+$), all in isospin 0. For $Bbar D$ ($0^+$), $B^*bar D$ ($1^+$), $Bbar D^*$ ($1^+$) and $B^*bar D^*$ ($0^+$, $1^+$, $2^+$) we also find similar bound states in $I=0$, but much less bound, which would correspond to exotic meson states with $bar b$ and $bar c$ quarks, and for the $I=1$ we find a repulsive interaction. We also evaluate the scattering lengths in all cases, which can be tested in current investigations of lattice QCD.
We study R-parity violating contributions to the mixing parameter $y$ for $D^0 -bar D^0$ and $B^0_{d,s} - bar B^0_{d,s}$ systems. We first obtain general expressions for new physics contributions to $y$ from effective four fermion operators. We then use them to study R-parity contributions. We find that R-parity violating contributions to $D^0 - bar D^0$ mixing, and $B_{d}^0 - bar B_{d}^0$ to be small. There may be sizable contribution to $B_s^0 -bar B_s^0$ mixing. We also obtain some interesting bounds on R-parity violating parameters using known Standard Model predictions and experimental data.
We study the $Z_{cs}(3985)$ state recently observed by the BESIII Collaboration in the one-boson-exchange model, assuming that it is a $bar{D}_s^{(*)}D^{(*)}$ molecule, which has the quark content $cbar{c}sbar{q}$ with $q = u$, $d$. It is shown that the one-boson-exchange potential is too weak to generate dynamcally $bar{D}_s D$, $bar{D}^*_s D$, and $bar{D}_sD^*$ states, while for the case of $bar{D}^*_s D^*$, very loosely bound states are likely, with binding energies of the order of several MeV. We conclude that, the observed $Z_{cs}(3985)$ state, if confirmed by further experiments, cannot be a pure hadronic molecular state of $bar{D}_s D^*$ and $bar{D}_s^*D$ and could consist of large components of compact nature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا