ترغب بنشر مسار تعليمي؟ اضغط هنا

Charged Black Holes and Constraints on Baryon Asymmetry

92   0   0.0 ( 0 )
 نشر من قبل Arun Kenath Mr
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف C Sivaram




اسأل ChatGPT حول البحث

The no-hair theorem, which postulates that all black holes can be completely characterized by only three externally observable parameters: mass, electric charge, and angular momentum, sets constraints on both the maximal angular momentum and maximal electric charge. In this work, we would explore the consequence of these for the formation of primordial black holes in the early universe and also the formation of black holes due to collapse of dark matter configurations and how this could be used to probe the conditions in the very early universe and constrain the epoch when baryon asymmetry was established.

قيم البحث

اقرأ أيضاً

61 - S. Panahiyan 2018
In this paper, we investigate the thermodynamics of dyonic black holes in the presence of Born-Infeld electromagnetic field. We show that electric-magnetic duality reported for dyonic solutions with Maxwell field is omitted in case of Born-Infeld gen eralization. We also confirm that generalization to nonlinear field provides the possibility of canceling the effects of cosmological constant. This is done for nonlinearity parameter with $10^{-33}mbox{ eV}^{2}$ order of magnitude which is high nonlinearity regime. In addition, we show that for small electric/magnetic charge and high nonlinearity regime, black holes would develop critical behavior and several phases. In contrast, for highly charged case and Maxwell limits (small nonlinearity), black holes have one thermal stable phase. We also find that the pressure of the cold black holes is bounded by some constraints on its volume while hot black holes pressure has physical behavior for any volume. In addition, we report on possibility of existences of triple point and reentrant of phase transition in thermodynamics of these black holes. Finally, We show that if electric and magnetic charges are identical, the behavior of our solutions would be Maxwell like (independent of nonlinear parameter and field). In other words, nonlinearity of electromagnetic field becomes evident only when these black holes are charged magnetically and electrically different.
We present current direct and astrophysical limits on the cosmological abundance of black holes with extremal magnetic charge. Because they dont Hawking radiate, much lighter primordial black holes could exist today if they are extremal. The dominant constraints come from white dwarf destruction for intermediate masses, and intergalactic gas heating for heavier black holes. Extremal magnetic black holes may catalyze proton decay, and thus we derive robust limits -- independent of the catalysis cross section -- from the above as well as from white dwarf heating. We discuss other bounds such as those from neutron star heating, solar neutrino production, binary formation and annihilation into gamma rays, and magnetic field destruction. We note that stable magnetically charged black holes can assist in the formation of neutron star mass black holes.
We propose a new mechanism for baryogenesis, in which baryon asymmetry is generated by absorption of a new particle $X$ carrying baryon number onto Primordial Black Holes (PBHs). Due to CP violation of $X$ and $overline{X}$ scattering with the plasma surrounding PBHs, the two conjugate particles are differently absorbed by PBHs, leading to the production of an asymmetry in the $X$ sector. The production is halted by PBH evaporation, after which the asymmetry is transferred into the baryonic sector via $X$ decay. We show that this mechanism can produce the correct amount of asymmetry without violating the known constraints on PBHs concentration. Furthermore, we provide a systematic study of the parameter space, identifying the regions leading to the production of the correct baryon asymmetry.
We have refined our previously suggested scenario of generation of the cosmological baryon asymmetry through an asymmetric capture of baryons and antibaryons by primordial block hole arXiv:2009.04361. It is found that in the limit of weak interaction s of hypothetical heavy baryons with the primeval plasma the effect can be strongly enhanced and the observed magnitude of the asymmetry can be obtained for a wide range of the model parameters.
Photon charge has been of interest as a phenomenological testing ground for basic assumptions in fundamental physics. There have been several constraints on the photon charge based on very different considerations. In this paper we put further limits based on the well known properties of charged black holes and their subsequent evaporation by Hawking radiation and the assumption of charge conservation over this long physical process.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا