ترغب بنشر مسار تعليمي؟ اضغط هنا

On the buildup of massive early-type galaxies at z<~1. II- The coordinated key role of wet, mixed, and dry major mergers

124   0   0.0 ( 0 )
 نشر من قبل M.Carmen Eliche-Moral
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Hierarchical models predict that present-day massive early-type galaxies (mETGs) have finished their assembly at a quite late cosmic epoch (z~0.5), conflicting directly with galaxy mass-downsizing. In Eliche-Moral et al. (2010), we presented a semi-analytical model that predicts the increase by a factor of ~2.5 observed in the number density of mETGs since z~1 to the present, just accounting for the effects of the major mergers strictly-reported by observations. Here, we describe the relative, coordinated role of wet, mixed, and dry major mergers in driving this assembly. Accordingly to observations, the model predicts that: 1) wet major mergers have controlled the mETGs buildup since z~1, although dry and mixed mergers have also contributed significantly to it; 2) the bulk of this assembly takes place during the ~1.4 Gyr time-period elapsed at 0.7<z<1, being nearly frozen at z<~0.7; 3) this frostbite can be explained just accounting for the observational decrease of the major merger fraction since z~0.7, implying that major mergers (and, in particular, dry events) have contributed negligibly to the mETGs assembly during the last ~6.3 Gyr; and 4) major mergers are responsible for doubling the stellar mass at the massive-end of the red sequence since z~1. The most striking model prediction is that at least ~87% of the mETGs existing at z~1 are not the passively-evolved, high-z counterparts of present-day mETGs, but their gas-poor progenitors instead. This implies that <~5% of present-day mETGs have been really in place since z~1. The model derives a redshift of final assembly for present-day mETGs in agreement with hierarchical models (z~0.5), reproducing at the same time the observed buildup of mETGs at z<~1.(Abridged)



قيم البحث

اقرأ أيضاً

Hierarchical models predict that massive early-type galaxies (mETGs) derive from the most massive and violent merging sequences occurred in the Universe. However, the role of wet, mixed, and dry major mergers in the assembly of mETGs is questioned by some recent observations. We have developed a semi-analytical model to test the feasibility of the major-merger origin hypothesis for mETGs, just accounting for the effects on galaxy evolution of the major mergers strictly reported by observations. The model proves that it is feasible to reproduce the observed number density evolution of mETGs since z~1, just accounting for the coordinated effects of wet/mixed/dry major mergers. It can also reconcile the different assembly redshifts derived by hierarchical models and by mass downsizing data for mETGs, just considering that a mETG observed at a certain redshift is not necessarily in place since then. The model predicts that wet major mergers have controlled the mETGs buildup since z~1, although dry and mixed mergers have also played an essential role in it. The bulk of this assembly took place at 0.7<z<1, being nearly frozen at z<~0.7 due to the negligible number of major mergers occurred per existing mETG since then. The model suggests that major mergers have been the main driver for the observational migration of mass from the massive end of the blue galaxy cloud to that of the red sequence in the last ~8 Gyr.
In this paper we measure the merger fraction and rate, both minor and major, of massive early-type galaxies (M_star >= 10^11 M_Sun) in the COSMOS field, and study their role in mass and size evolution. We use the 30-band photometric catalogue in COSM OS, complemented with the spectroscopy of the zCOSMOS survey, to define close pairs with a separation 10h^-1 kpc <= r_p <= 30h-1 kpc and a relative velocity Delta v <= 500 km s^-1. We measure both major (stellar mass ratio mu = M_star,2/M_star,1 >= 1/4) and minor (1/10 <= mu < 1/4) merger fractions of massive galaxies, and study their dependence on redshift and on morphology. The merger fraction and rate of massive galaxies evolves as a power-law (1+z)^n, with major mergers increasing with redshift, n_MM = 1.4, and minor mergers showing little evolution, n_mm ~ 0. When split by their morphology, the minor merger fraction for early types is higher by a factor of three than that for spirals, and both are nearly constant with redshift. Our results show that massive early-type galaxies have undergone 0.89 mergers (0.43 major and 0.46 minor) since z ~ 1, leading to a mass growth of ~30%. We find that mu >= 1/10 mergers can explain ~55% of the observed size evolution of these galaxies since z ~ 1. Another ~20% is due to the progenitor bias (younger galaxies are more extended) and we estimate that very minor mergers (mu < 1/10) could contribute with an extra ~20%. The remaining ~5% should come from other processes (e.g., adiabatic expansion or observational effects). This picture also reproduces the mass growth and velocity dispersion evolution of these galaxies. We conclude from these results that merging is the main contributor to the size evolution of massive ETGs at z <= 1, accounting for ~50-75% of that evolution in the last 8 Gyr. Nearly half of the evolution due to mergers is related to minor (mu < 1/4) events.
Several studies have tried to ascertain whether or not the increase in abundance of the early-type galaxies (E-S0as) with time is mainly due to major mergers, reaching opposite conclusions. We have tested it directly through semi-analytical modelling , by studying how the massive early-type galaxies with log(M_*/Msun)>11 at z~0 (mETGs) would have evolved backwards-in-time, under the hypothesis that each major merger gives place to an early-type galaxy. The study was carried out just considering the major mergers strictly reported by observations at each redshift, and assuming that gas-rich major mergers experience transitory phases of dust-reddened, star-forming galaxies (DSFs). The model is able to reproduce the observed evolution of the galaxy LFs at z<~1, simultaneously for different rest-frame bands (B, I, and K) and for different selection criteria on color and morphology. It also provides a framework in which apparently-contradictory results on the recent evolution of the luminosity function (LF) of massive, red galaxies can be reconciled, just considering that observational samples of red galaxies can be significantly contaminated by DSFs. The model proves that it is feasible to build up ~50-60% of the present-day mETG population at z<~1 and to reproduce the observational excess by a factor of ~4-5 of late-type galaxies at 0.8<z<1 through the coordinated action of wet, mixed, and dry major mergers, fulfilling global trends that are in general agreement with mass-downsizing. The bulk of this assembly takes place during ~1 Gyr elapsed at 0.8<z<1. The model suggests that major mergers have been the main driver for the observational migration of mass from the massive-end of the blue galaxy cloud to that of the red sequence in the last ~8 Gyr.(Abridged)
205 - F. S. Liu 2009
We search for ongoing major dry-mergers in a well selected sample of local Brightest Cluster Galaxies (BCGs) from the C4 cluster catalogue. 18 out of 515 early-type BCGs with redshift between 0.03 and 0.12 are found to be in major dry-mergers, which are selected as pairs (or triples) with $r$-band magnitude difference $dm<1.5$ and projected separation $rp<30$ kpc, and showing signatures of interaction in the form of significant asymmetry in residual images. We find that the fraction of BCGs in major dry-mergers increases with the richness of the clusters, consistent with the fact that richer clusters usually have more massive (or luminous) BCGs. We estimate that present-day early-type BCGs may have experienced on average $sim 0.6 (tmerge/0.3Gyr)^{-1}$ major dry-mergers and through this process increases their luminosity (mass) by $15% (tmerge/0.3Gyr)^{-1} (fmass/0.5)$ on average since $z=0.7$, where $tmerge$ is the merging timescale and $fmass$ is the mean mass fraction of companion galaxies added to the central ones. We also find that major dry-mergers do not seem to elevate radio activities in BCGs. Our study shows that major dry-mergers involving BCGs in clusters of galaxies are not rare in the local Universe, and they are an important channel for the formation and evolution of BCGs.
We report interferometric imaging of CO(J=3-2) emission toward the z=2.846 submillimeter-selected galaxy SMM J04135+10277, using the Combined Array for Research in Millimeter-wave Astronomy (CARMA). SMM J04135+10277 was previously thought to be a gas -rich, submillimeter-selected quasar, with the highest molecular gas mass among high-z quasars reported in the literature. Our maps at ~6x improved linear resolution relative to earlier observations spatially resolve the emission on ~1.7 scales, corresponding to a (lensing-corrected) source radius of ~5.2 kpc. They also reveal that the molecular gas reservoir, and thus, likely the submillimeter emission, is not associated with the host galaxy of the quasar, but with an optically faint gas-rich galaxy at 5.2, or 41.5 kpc projected distance from the active galactic nucleus (AGN). The obscured gas-rich galaxy has a dynamical mass of M_dyn sin2(i)=5.6x10^11 M_sun, corresponding to a gas mass fraction of ~21%. Assuming a typical M_BH/M* ratio for z>2 quasars, the two galaxies in this system have an approximate mass ratio of ~1.9. Our findings suggest that this quasar-starburst galaxy pair could represent an early stage of a rare major, gas-rich/gas-poor (wet-dry) merger of two massive galaxies at z=2.8, rather than a single, gas-rich AGN host galaxy. Such systems could play an important role in the early buildup of present-day massive galaxies through a submillimeter-luminous starburst phase, and may remain hidden in larger numbers among rest-frame far-infrared-selected quasar samples at low and high redshift.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا