ترغب بنشر مسار تعليمي؟ اضغط هنا

Asymmetric Beams and CMB Statistical Anisotropy

137   0   0.0 ( 0 )
 نشر من قبل Duncan Hanson
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Beam asymmetries result in statistically-anisotropic cosmic microwave background (CMB) maps. Typically, they are studied for their effects on the CMB power spectrum, however they more closely mimic anisotropic effects such as gravitational lensing and primordial power asymmetry. We discuss tools for studying the effects of beam asymmetry on general quadratic estimators of anisotropy, analytically for full-sky observations as well as in the analysis of realistic data. We demonstrate this methodology in application to a recently-detected 9 sigma quadrupolar modulation effect in the WMAP data, showing that beams provide a complete and sufficient explanation for the anomaly.



قيم البحث

اقرأ أيضاً

Statistical isotropy (SI) of Cosmic Microwave Background (CMB) fluctuations is a key observational test to validate the cosmological principle underlying the standard model of cosmology. While a detection of SI violation would have immense cosmologic al ramification, it is important to recognise their possible origin in systematic effects of observations. WMAP seven year (WMAP-7) release claimed significant deviation from SI in the bipolar spherical harmonic (BipoSH) coefficients $A_{ll}^{20}$ and $A_{l-2l}^{20}$. Here we present the first explicit reproduction of the measurements reported in WMAP-7, confirming that beam systematics alone can completely account for the measured SI violation. The possibility of such a systematic origin was alluded to in WMAP-7 paper itself and other authors but not as explicitly so as to account for it accurately. We simulate CMB maps using the actual WMAP non-circular beams and scanning strategy. Our estimated BipoSH spectra from these maps match the WMAP-7 results very well. It is also evident that only a very careful and adequately detailed modelling, as carried out here, can conclusively establish that the entire signal arises from non-circular beam effect. This is important since cosmic SI violation signals are expected to be subtle and dismissing a large SI violation signal as observational artefact based on simplistic plausibility arguments run the serious risk of throwing the baby out with the bathwater.
Any isotropy violating phenomena on cosmic microwave background (CMB) induces off-diagonal correlations in the two-point function. These correlations themselves can be used to estimate the underlying anisotropic signals. Masking due to residual foreg rounds, or availability of partial sky due to survey limitation, are unavoidable circumstances in CMB studies. But, masking induces additional correlations, and thus complicates the recovery of such signals. In this work, we discuss a procedure based on bipolar spherical harmonic (BipoSH) formalism to comprehensively addresses any spurious correlations induced by masking and successfully recover hidden signals of anisotropy in observed CMB maps. This method is generic, and can be applied to recover a variety of isotropy violating phenomena. Here, we illustrate the procedure by recovering the subtle Doppler boost signal from simulated boosted CMB skies, which has become possible with the unprecedented full-sky sensitivity of PLANCK probe.
The quantity $T_0$, the cosmic microwave background (CMB) monopole, is an often neglected seventh parameter of the standard cosmological model. As well as its variation affecting the physics of the CMB, the measurement of $T_0$ is also used to calibr ate the anisotropies, via the orbital dipole. We point out that it is easy to misestimate the effect of $T_0$ because the CMB anisotropies are conventionally provided in temperature units. In fact the anisotropies are most naturally described as dimensionless and we argue for restoring the convention of working with $Delta T/T$ rather than $Delta T$. As a free cosmological parameter, $T_0$ most naturally only impacts the CMB power spectra through late-time effects. Thus if we ignore the COBE-FIRAS measurement, current CMB data only weakly constrain $T_0$. Even ideal future CMB data can at best provide a percent-level constraint on $T_0$, although adding large-scale structure data will lead to further improvement. The FIRAS measurement is so precise that its uncertainty negligibly effects most, but not all, cosmological parameter inferences for current CMB experiments. However, if we eventually want to extract all available information from CMB power spectra measured to multipoles $ellsimeq5000$, then we will need a better determination of $T_0$ than is currently available.
117 - Yuri Shtanov 2010
Cosmological inflation remains to be a unique mechanism of generation of plausible initial conditions in the early universe. In particular, it generates the primordial quasiclassical perturbations with power spectrum determined by the fundamental pri nciples of quantum field theory. In this work, we pay attention to the fact that the quasiclassical perturbations permanently generated at early stages of inflation break homogeneity and isotropy of the cosmological background. The evolution of the small-scale quantum vacuum modes on this inhomogeneous background results in statistical anisotropy of the primordial power spectrum, which can manifest itself in the observable large-scale structure and cosmic microwave background. The effect is predicted to have almost scale-invariant form dominated by a quadrupole and may serve as a non-trivial test of the inflationary scenario. Theoretical expectation of the magnitude of this statistical anisotropy depends on the assumptions about the physics in the trans-Planckian region of wavenumbers.
We test the statistical isotropy (SI) of the $E$-mode polarization of the cosmic microwave background (CMB) radiation observed by the Planck satellite using two statistics, namely, the contour Minkowski Tensor (CMT) and the Directional statistic ($ma thcal{D}$ statistic). The parameter $alpha$ obtained from the CMT provides information of the alignment of structures and can be used to infer statistical properties such as Gaussianity and SI of random fields. The $mathcal{D}$ statistic is based on detecting preferred directionality shown by vectors defined by the field. These two tests are complementary to each other in terms of sensitivity at different angular scales. The CMT is sensitive towards small-scale information present in the CMB map while $mathcal{D}$ statistic is more sensitive at large-scales. We compute $alpha$ and $mathcal{D}$ statistic for the observed $E$-mode of CMB polarization, focusing on the SMICA maps, and compare with the values calculated using FFP10 SMICA simulations which contain both CMB and noise. We find good agreement between the observed data and simulations. Further, in order to specifically analyze the CMB signal in the data, we compare the values of the two statistics obtained from the observed Planck data with the values obtained from isotropic simulations having the same power spectrum, and from SMICA noise simulations. We find no statistically significant deviation from SI using the $alpha$ parameter. From $mathcal{D}$ statistic we find that the data shows slight deviation from SI at large angular scales.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا