ترغب بنشر مسار تعليمي؟ اضغط هنا

Detrending career statistics in professional baseball: Accounting for the steroids era and beyond

138   0   0.0 ( 0 )
 نشر من قبل Alexander Petersen
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

There is a long standing debate over how to objectively compare the career achievements of professional athletes from different historical eras. Developing an objective approach will be of particular importance over the next decade as Major League Baseball (MLB) players from the steroids era become eligible for Hall of Fame induction. Here we address this issue, as well as the general problem of comparing statistics from distinct eras, by detrending the seasonal statistics of professional baseball players. We detrend player statistics by normalizing achievements to seasonal averages, which accounts for changes in relative player ability resulting from both exogenous and endogenous factors, such as talent dilution from expansion, equipment and training improvements, as well as performance enhancing drugs (PED). In this paper we compare the probability density function (pdf) of detrended career statistics to the pdf of raw career statistics for five statistical categories -- hits (H), home runs (HR), runs batted in (RBI), wins (W) and strikeouts (K) -- over the 90-year period 1920-2009. We find that the functional form of these pdfs are stationary under detrending. This stationarity implies that the statistical regularity observed in the right-skewed distributions for longevity and success in professional baseball arises from both the wide range of intrinsic talent among athletes and the underlying nature of competition. Using this simple detrending technique, we examine the top 50 all-time careers for H, HR, RBI, W and K. We fit the pdfs for career success by the Gamma distribution in order to calculate objective benchmarks based on extreme statistics which can be used for the identification of extraordinary careers.



قيم البحث

اقرأ أيضاً

The Matthew effect refers to the adage written some two-thousand years ago in the Gospel of St. Matthew: For to all those who have, more will be given. Even two millennia later, this idiom is used by sociologists to qualitatively describe the dynamic s of individual progress and the interplay between status and reward. Quantitative studies of professional careers are traditionally limited by the difficulty in measuring progress and the lack of data on individual careers. However, in some professions, there are well-defined metrics that quantify career longevity, success, and prowess, which together contribute to the overall success rating for an individual employee. Here we demonstrate testable evidence of the age-old Matthew rich get richer effect, wherein the longevity and past success of an individual lead to a cumulative advantage in further developing his/her career. We develop an exactly solvable stochastic career progress model that quantitatively incorporates the Matthew effect, and validate our model predictions for several competitive professions. We test our model on the careers of 400,000 scientists using data from six high-impact journals, and further confirm our findings by testing the model on the careers of more than 20,000 athletes in four sports leagues. Our model highlights the importance of early career development, showing that many careers are stunted by the relative disadvantage associated with inexperience.
In recent years, several approaches for modelling pedestrian dynamics have been proposed and applied e.g. for design of egress routes. However, so far not much attention has been paid to their quantitative validation. This unsatisfactory situation be longs amongst others on the uncertain and contradictory experimental data base. The fundamental diagram, i.e. the density-dependence of the flow or velocity, is probably the most important relation as it connects the basic parameter to describe the dynamic of crowds. But specifications in different handbooks as well as experimental measurements differ considerably. The same is true for the bottleneck flow. After a comprehensive review of the experimental data base we give an survey of a research project, including experiments with up to 250 persons performed under well controlled laboratory conditions. The trajectories of each person are measured in high precision to analyze the fundamental diagram and the flow through bottlenecks. The trajectories allow to study how the way of measurement influences the resulting relations. Surprisingly we found large deviation amongst the methods. These may be responsible for the deviation in the literature mentioned above. The results are of particular importance for the comparison of experimental data gained in different contexts and for the validation of models.
We present an analysis of oil prices in US$ and in other major currencies that diagnoses unsustainable faster-than-exponential behavior. This supports the hypothesis that the recent oil price run-up has been amplified by speculative behavior of the t ype found during a bubble-like expansion. We also attempt to unravel the information hidden in the oil supply-demand data reported by two leading agencies, the US Energy Information Administration (EIA) and the International Energy Agency (IEA). We suggest that the found increasing discrepancy between the EIA and IEA figures provides a measure of the estimation errors. Rather than a clear transition to a supply restricted regime, we interpret the discrepancy between the IEA and EIA as a signature of uncertainty, and there is no better fuel than uncertainty to promote speculation!
103 - Glen Cowan 2013
These lectures describe several topics in statistical data analysis as used in High Energy Physics. They focus on areas most relevant to analyses at the LHC that search for new physical phenomena, including statistical tests for discovery and exclusi on limits. Particular attention is payed to the treatment of systematic uncertainties through nuisance parameters.
We report on the existing connection between power-law distributions and allometries. As it was first reported in [PLoS ONE 7, e40393 (2012)] for the relationship between homicides and population, when these urban indicators present asymptotic power- law distributions, they can also display specific allometries among themselves. Here, we present an extensive characterization of this connection when considering all possible pairs of relationships from twelve urban indicators of Brazilian cities (such as child labor, illiteracy, income, sanitation and unemployment). Our analysis reveals that all our urban indicators are asymptotically distributed as power laws and that the proposed connection also holds for our data when the allometric relationship displays enough correlations. We have also found that not all allometric relationships are independent and that they can be understood as a consequence of the allometric relationship between the urban indicator and the population size. We further show that the residuals fluctuations surrounding the allometries are characterized by an almost constant variance and log-normal distributions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا