ﻻ يوجد ملخص باللغة العربية
We evaluate two dominant nuclear reaction rates and their uncertainties that affect 44Ti production in explosive nucleosynthesis. Experimentally we develop thick-target yields for the 40Ca(alpha,gamma)44Ti reaction at E(alpha) = 4.13, 4.54, and 5.36 MeV using gamma-ray spectroscopy. At the highest beam energy, we also performed an activation measurement that agrees with the thick target result. From the measured yields a stellar reaction rate was developed that is smaller than current statistical-model calculations and recent experimental results, which would suggest lower 44Ti production in scenarios for the alpha-rich freeze out. Special attention has been paid to assessing realistic uncertainties of stellar rates produced from a combination of experimental and theoretical cross sections, which we use to develop a re-evaluation of the 44Ti(alpha,p)47V reaction rate. Using these we carry out a sensitivity survey of 44Ti synthesis in eight expansions representing peak temperature and density conditions drawn from a suite of recent supernova explosion models. Our results suggest that the current uncertainty in these two reaction rates could lead to as large an uncertainty in 44Ti synthesis as that produced by different treatments of stellar physics.
The 44Ti(t1/2 = 59 y) nuclide, an important signature of supernova nucleosynthesis, has recently been observed as live radioactivity by gamma-ray astronomy from the Cas A remnant. We investigate in the laboratory the major 44Ti production reaction, 4
We investigate the physical conditions where 44Ti and 56Ni are created in core-collapse supernovae. In this preliminary work we use a series of post-processing network calculations with parametrized expansion profiles that are representative of the w
The stellar reaction rates of radiative $alpha$-capture reactions on heavy isotopes are of crucial importance for the $gamma$ process network calculations. These rates are usually derived from statistical model calculations, which need to be validate
A key assumption in the reconstruction of extensive air showers using the air fluorescence technique is the hypothesis that fluorescence is proportional to energy deposition at all depths in the shower. This ansatz, along with the supposition that pa
We present preliminary results of INTEGRAL/IBIS observations on Cas A, Tycho and Vela Junior Supernova remnants in the line emission of 44Ti. This radioactive nucleus is thought to be exclusively produced in supernovae during the first stages of the