ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantifying dwarf satellites through gravitational imaging: the case of SDSS J120602.09+514229.5

91   0   0.0 ( 0 )
 نشر من قبل Simona Vegetti
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

SDSS J120602.09+514229.5 is a gravitational lens system formed by a group of galaxies at redshift z=0.422 lensing a bright background galaxy at redshift z=2.001. The main peculiarity of this system is the presence of a luminous satellite near the Einstein radius, that slightly deforms the giant arc. This makes SDSS J120602.09+514229.5 the ideal system to test our grid-based Bayesian lens modelling method, designed to detect galactic satellites independently from their mass-to-light ratio, and to measure the mass of this dwarf galaxy despite its high redshift. Thanks to the pixelized source and potential reconstruction technique of Vegetti and Koopmans 2009a we are able to detect the luminous satellite as a local positive surface density correction to the overall smooth potential. Assuming a truncated Pseudo-Jaffe density profile, the satellite has a mass M=(2.75+-0.04)10^10 M_sun inside its tidal radius of r_t=0.68. We determine for the satellite a luminosity of L_B=(1.6+-0.8)10^9 L_sun, leading to a total mass-to-light ratio within the tidal radius of (M/L)_B=(17.2+-8.5) M_sun/L_sun. The central galaxy has a sub-isothermal density profile as in general is expected for group members. From the SDSS spectrum we derive for the central galaxy a velocity dispersion of sigma_kinem=380+-60 km/s within the SDSS aperture of diameter 3. The logarithmic density slope of gamma=1.7+0.25-0.30 (68% CL), derived from this measurement, is consistent within 1-sigma with the density slope of the dominant lens galaxy gamma~1.6, determined from the lens model. This paper shows how powerful pixelized lensing techniques are in detecting and constraining the properties of dwarf satellites at high redshift.

قيم البحث

اقرأ أيضاً

We report the detection of a dark substructure through direct gravitational imaging - undetected in the HST-ACS F814W image - in the gravitational lens galaxy of SLACS SDSSJ0946+1006 (the Double Einstein Ring). The detection is based on a Bayesian gr id reconstruction of the two-dimensional surface density of the galaxy inside an annulus around its Einstein radius (few kpc). [...] We confirm this detection by modeling the system including a parametric mass model with a tidally truncated pseudo-Jaffe density profile; in that case the substructure mass is M_sub=(3.51+-0.15)x10^9 Msun, located at (-0.651+-0.038,1.040+-0.034), precisely where also the surface density map shows a strong convergence peak. [...] We set a lower limit of (M/L)_V}>=120 (Msun/L}_V,sun (3-sigma) inside a sphere of 0.3 kpc centred on the substructure (r_tidal=1.1kpc). The result is robust under substantial changes in the model and the data-set (e.g. PSF, pixel number and scale, source and potential regularization, rotations and galaxy subtraction). Despite being at the limits of detectability, it can therefore not be attributed to obvious systematic effects. Our detection implies a dark matter mass fraction at the radius of the inner Einstein ring of f_CDM=2.15^{+2.05}_{-1.25} percent (68 percent C.L) in the mass range 4x10^6 Msun to 4x10^9 Msun assuming alpha=1.9+-0.1 (with dN/dm ~ m^-alpha). Assuming a flat prior on alpha, between 1.0 and 3.0, increases this to f_CDM=2.56^{+3.26}_{-1.50} percent (68 percent C.L). The likelihood ratio is 0.51 between our best value (f_CDM=0.0215) and that from simulations (f_sim=0.003). Hence the inferred mass fraction, admittedly based on a single lens system, is large but still consistent with predictions. [...]
We use the Auriga cosmological simulations of Milky Way (MW)-mass galaxies and their surroundings to study the satellite populations of dwarf galaxies in $Lambda$CDM. As expected from prior work, the number of satellites above a fixed stellar mass is a strong function of the mass of the primary dwarf. For galaxies as luminous as the Large Magellanic Cloud (LMC), and for halos as massive as expected for the LMC (determined by its rotation speed), the simulations predict about 3 satellites with stellar masses exceeding $M_*>10^5, M_odot$. If the LMC is on its first pericentric passage, then these satellites should be near the LMC and should have orbital angular momenta roughly coincident with that of the LMC. We use 3D positions and velocities from the 2nd data release of the Gaia mission to revisit which of the classical MW dwarf spheroidals could plausibly be LMC satellites. The new proper motions of the Fornax and Carina dwarf spheroidals place them on orbits closely aligned with the orbital plane of the Magellanic Clouds, hinting at a potential Magellanic association. Together with the Small Magellanic Cloud (SMC), this result raises to $3$ the number of LMC satellites with $M_*>10^5, M_odot$, as expected from simulations. This also fills the 12-mag luminosity gap between the SMC and the ultra-faints Hyi1, Car2, Hor1, and Car3, the few ultra-faint satellites confirmed to have orbits consistent with a Magellanic origin.
We present details of the construction and characterization of the coaddition of the Sloan Digital Sky Survey Stripe 82 ugriz imaging data. This survey consists of 275 deg$^2$ of repeated scanning by the SDSS camera of $2.5arcdeg$ of $delta$ over $-5 0arcdeg le alpha le 60arcdeg$ centered on the Celestial Equator. Each piece of sky has $sim 20$ runs contributing and thus reaches $sim2$ magnitudes fainter than the SDSS single pass data, i.e. to $rsim 23.5$ for galaxies. We discuss the image processing of the coaddition, the modeling of the PSF, the calibration, and the production of standard SDSS catalogs. The data have $r$-band median seeing of 1.1arcsec, and are calibrated to $le 1%$. Star color-color, number counts, and psf size vs modelled size plots show the modelling of the PSF is good enough for precision 5-band photometry. Structure in the psf-model vs magnitude plot show minor psf mis-modelling that leads to a region where stars are being mis-classified as galaxies, and this is verified using VVDS spectroscopy. As this is a wide area deep survey there are a variety of uses for the data, including galactic structure, photometric redshift computation, cluster finding and cross wavelength measurements, weak lensing cluster mass calibrations, and cosmic shear measurements.
60 - N. Jackson 2009
The incidence of sub-galactic level substructures is an important quantity, as it is a generic prediction of high-resolution Cold Dark Matter (CDM) models which is susceptible to observational test. Confrontation of theory with observations is curren tly in an uncertain state. In particular, gravitational lens systems appear to show evidence for flux ratio anomalies, which are expected from CDM substructures although not necessarily in the same range of radius as observed. However, the current small samples of lenses suggest that the lens galaxies in these systems are unusually often accompanied by luminous galaxies. Here we investigate a large sample of unlensed elliptical galaxies from the COSMOS survey, and determine the fraction of objects with satellites, in excess of background counts, as a function of satellite brightness and separation from the primary object. We find that the incidence of luminous satellites within 20 kpc is typically a few tenths of one percent for satellites of a few tenths of the primary flux, comparable to what is observed for the wider but shallower SDSS survey. Although the environments of lenses in the SLACS survey are compatible with this observation, the CLASS radio survey lenses are significantly in excess of this.
A sample of white dwarfs is selected from SDSS DR3 imaging data using their reduced proper motions, based on improved proper motions from SDSS plus USNO-B combined data. Numerous SDSS and followup spectra (Kilic et al. 2005) are used to quantify comp leteness and contamination of the sample; kinematic models are used to understand and correct for velocity-dependent selection biases. A luminosity function is constructed covering the range 7 < M_bol < 16, and its sensitivity to various assumptions and selection limits is discussed. The white dwarf luminosity function based on 6000 stars is remarkably smooth, and rises nearly monotonically to M_bol = 15.3. It then drops abruptly, although the small number of low-luminosity stars in the sample and their unknown atmospheric composition prevent quantitative conclusions about this decline. Stars are identified that may have high tangential velocities, and a preliminary luminosity function is constructed for them.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا