ﻻ يوجد ملخص باللغة العربية
We present a compact experimental design for producing an arbitrarily large optical continuous-variable cluster state using just one single-mode vacuum squeezer and one quantum nondemolition gate. Generating the cluster state and computing with it happen simultaneously: more entangled modes become available as previous modes are measured, thereby making finite the requirements for coherence and stability even as the computation length increases indefinitely.
We describe a generalization of the cluster-state model of quantum computation to continuous-variable systems, along with a proposal for an optical implementation using squeezed-light sources, linear optics, and homodyne detection. For universal quan
The sum gate is the canonical two-mode gate for universal quantum computation based on continuous quantum variables. It represents the natural analogue to a qubit C-NOT gate. In addition, the continuous-variable gate describes a quantum nondemolition
A long-standing open question about Gaussian continuous-variable cluster states is whether they enable fault-tolerant measurement-based quantum computation. The answer is yes. Initial squeezing in the cluster above a threshold value of 20.5 dB ensure
Traditional continuous variable teleportation can only approach unit fidelity in the limit of an infinite (and unphysical) amount of squeezing. We describe a new method for continuous variable teleportation that approaches unit fidelity with finite r
Graph states are a unique resource for quantum information processing, such as measurement-based quantum computation. Here, we theoretically investigate using continuous-variable graph states for single-parameter quantum metrology, including both pha