ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-equilibrium dynamics of stochastic point processes with refractoriness

174   0   0.0 ( 0 )
 نشر من قبل Moritz Deger
 تاريخ النشر 2010
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Stochastic point processes with refractoriness appear frequently in the quantitative analysis of physical and biological systems, such as the generation of action potentials by nerve cells, the release and reuptake of vesicles at a synapse, and the counting of particles by detector devices. Here we present an extension of renewal theory to describe ensembles of point processes with time varying input. This is made possible by a representation in terms of occupation numbers of two states: Active and refractory. The dynamics of these occupation numbers follows a distributed delay differential equation. In particular, our theory enables us to uncover the effect of refractoriness on the time-dependent rate of an ensemble of encoding point processes in response to modulation of the input. We present exact solutions that demonstrate generic features, such as stochastic transients and oscillations in the step response as well as resonances, phase jumps and frequency doubling in the transfer of periodic signals. We show that a large class of renewal processes can indeed be regarded as special cases of the model we analyze. Hence our approach represents a widely applicable framework to define and analyze non-stationary renewal processes.



قيم البحث

اقرأ أيضاً

101 - Maylis Varvenne 2017
The main objective of the paper is to study the long-time behavior of general discrete dynamics driven by an ergodic stationary Gaussian noise. In our main result, we prove existence and uniqueness of the invariant distribution and exhibit some upper -bounds on the rate of convergence to equilibrium in terms of the asymptotic behavior of the covariance function of the Gaussian noise (or equivalently to its moving average representation). Then, we apply our general results to fractional dynamics (including the Euler Scheme associated to fractional driven Stochastic Differential Equations). Whenthe Hurst parameter H belongs to (0, 1/2) we retrieve, with a slightly more explicit approach due to the discrete-time setting, the rate exhibited by Hairer in a continuous time setting. In this fractional setting, we also emphasize the significant dependence of the rate of convergence to equilibriumon the local behaviour of the covariance function of the Gaussian noise.
207 - Sylvain Billiard 2016
We present a model for the dynamics of a population of bacteria with a continuum of traits, who compete for resources and exchange horizontally (transfer) an otherwise vertically inherited trait with possible mutations. Competition influences individ ual demographics, affecting population size, which feeds back on the dynamics of transfer. We consider a stochastic individual-based pure jump process taking values in the space of point measures, and whose jump events describe the individual reproduction, transfer and death mechanisms. In a large population scale, the stochastic process is proved to converge to the solution of a nonlinear integro-differential equation. When there are only two different traits and no mutation, this equation reduces to a non-standard two-dimensional dynamical system. We show how crucial the forms of the transfer rates are for the long-term behavior of its solutions. We describe the dynamics of invasion and fixation when one of the two traits is initially rare, and compute the invasion probabilities. Then, we study the process under the assumption of rare mutations. We prove that the stochastic process at the mutation time scale converges to a jump process which describes the successive invasions of successful mutants. We show that the horizontal transfer can have a major impact on the distribution of the successive mutational fixations, leading to dramatically different behaviors, from expected evolution scenarios to evolutionary suicide. Simulations are given to illustrate these phenomena.
As well as arising naturally in the study of non-intersecting random paths, random spanning trees, and eigenvalues of random matrices, determinantal point processes (sometimes also called fermionic point processes) are relatively easy to simulate and provide a quite broad class of models that exhibit repulsion between points. The fundamental ingredient used to construct a determinantal point process is a kernel giving the pairwise interactions between points: the joint distribution of any number of points then has a simple expression in terms of determinants of certain matrices defined from this kernel. In this paper we initiate the study of an analogous class of point processes that are defined in terms of a kernel giving the interaction between $2M$ points for some integer $M$. The role of matrices is now played by $2M$-dimensional hypercubic arrays, and the determinant is replaced by a suitable generalization of it to such arrays -- Cayleys first hyperdeterminant. We show that some of the desirable features of determinantal point processes continue to be exhibited by this generalization.
274 - Nicolas Privault 2018
These notes survey some aspects of discrete-time chaotic calculus and its applications, based on the chaos representation property for i.i.d. sequences of random variables. The topics covered include the Clark formula and predictable representation, anticipating calculus, covariance identities and functional inequalities (such as deviation and logarithmic Sobolev inequalities), and an application to option hedging in discrete time.
Time series datasets often contain heterogeneous signals, composed of both continuously changing quantities and discretely occurring events. The coupling between these measurements may provide insights into key underlying mechanisms of the systems un der study. To better extract this information, we investigate the asymptotic statistical properties of coupling measures between continuous signals and point processes. We first introduce martingale stochastic integration theory as a mathematical model for a family of statistical quantities that include the Phase Locking Value, a classical coupling measure to characterize complex dynamics. Based on the martingale Central Limit Theorem, we can then derive the asymptotic Gaussian distribution of estimates of such coupling measure, that can be exploited for statistical testing. Second, based on multivariate extensions of this result and Random Matrix Theory, we establish a principled way to analyze the low rank coupling between a large number of point processes and continuous signals. For a null hypothesis of no coupling, we establish sufficient conditions for the empirical distribution of squared singular values of the matrix to converge, as the number of measured signals increases, to the well-known Marchenko-Pastur (MP) law, and the largest squared singular value converges to the upper end of the MPs support. This justifies a simple thresholding approach to assess the significance of multivariate coupling. Finally, we illustrate with simulations the relevance of our univariate and multivariate results in the context of neural time series, addressing how to reliably quantify the interplay between multi channel Local Field Potential signals and the spiking activity of a large population of neurons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا