ﻻ يوجد ملخص باللغة العربية
We study the approximation of arbitrary distributions $P$ on $d$-dimensional space by distributions with log-concave density. Approximation means minimizing a Kullback--Leibler-type functional. We show that such an approximation exists if and only if $P$ has finite first moments and is not supported by some hyperplane. Furthermore we show that this approximation depends continuously on $P$ with respect to Mallows distance $D_1(cdot,cdot)$. This result implies consistency of the maximum likelihood estimator of a log-concave density under fairly general conditions. It also allows us to prove existence and consistency of estimators in regression models with a response $Y=mu(X)+epsilon$, where $X$ and $epsilon$ are independent, $mu(cdot)$ belongs to a certain class of regression functions while $epsilon$ is a random error with log-concave density and mean zero.
The log-concave projection is an operator that maps a d-dimensional distribution P to an approximating log-concave density. Prior work by D{u}mbgen et al. (2011) establishes that, with suitable metrics on the underlying spaces, this projection is con
Log-concave distributions include some important distributions such as normal distribution, exponential distribution and so on. In this note, we show inequalities between two Lp-norms for log-concave distributions on the Euclidean space. These inequa
In this paper, we have developed a new class of sampling schemes for estimating parameters of binomial and Poisson distributions. Without any information of the unknown parameters, our sampling schemes rigorously guarantee prescribed levels of precision and confidence.
We introduce new shape-constrained classes of distribution functions on R, the bi-$s^*$-concave classes. In parallel to results of Dumbgen, Kolesnyk, and Wilke (2017) for what they called the class of bi-log-concave distribution functions, we show th
We introduce a new shape-constrained class of distribution functions on R, the bi-$s^*$-concave class. In parallel to results of Dumbgen, Kolesnyk, and Wilke (2017) for what they called the class of bi-log-concave distribution functions, we show that