ﻻ يوجد ملخص باللغة العربية
Collimated ejections of plasma called coronal hole jets are commonly observed in polar coronal holes. However, such coronal jets are not only a specific features of polar coronal holes but they can also be found in coronal holes appearing at lower heliographic latitudes. In this paper we present some observations of equatorial coronal hole jets made up with data provided by the STEREO/SECCHI instruments during a period comprising March 2007 and December 2007. The jet events are selected by requiring at least some visibility in both COR1 and EUVI instruments. We report 15 jet events, and we discuss their main features. For one event, the uplift velocity has been determined as about 200 km/s, while the deceleration rate appears to be about 0.11 km/s2, less than solar gravity. The average jet visibility time is about 30 minutes, consistent with jet observed in polar regions. On the basis of the present dataset, we provisionally conclude that there are not substantial physical differences between polar and equatorial coronal hole jets.
Small, impulsive jets commonly occur throughout the solar corona, but are especially visible in coronal holes. Evidence is mounting that jets are part of a continuum of eruptions that extends to much larger coronal mass ejections and eruptive flares.
Coronal holes are the observational manifestation of the solar magnetic field open to the heliosphere and are of pivotal importance for our understanding of the origin and acceleration of the solar wind. Observations from space missions such as the S
Coronal-hole jets occur ubiquitously in solar coronal holes, at EUV and X-ray bright points associated with intrusions of minority magnetic polarity. The embedded-bipole model for these jets posits that they are driven by explosive, fast reconnection
Velocity structures of jets in a coronal hole have been derived for the first time. Hinode observations revealed the existence of many bright points in coronal holes. They are loop-shaped and sometimes associated with coronal jets. Spectra obtained w
Bald patches are magnetic topologies in which the magnetic field is concave up over part of a photospheric polarity inversion line. A bald patch topology is believed to be the essential ingredient for filament channels and is often found in extrapola