ﻻ يوجد ملخص باللغة العربية
We investigate the dynamics of a driven system of dissipative hard spheres in the framework of mode-coupling theory. The dissipation is modeled by normal restitution, and driving is applied to individual particles in the bulk. In such a system, a glass transition is predicted for a finite transition density. For increasing inelasticity, the transition shifts to higher densities. Despite the strong driving at high dissipation, the transition persists up to the limit of totally inelastic normal restitution.
We consider the stationary state of a fluid comprised of inelastic hard spheres or disks under the influence of a random, momentum-conserving external force. Starting from the microscopic description of the dynamics, we derive a nonlinear equation of
Comment on the paper J. Solsvik and E. Manger, Kinetic theory models for granular mixtures with unequal granular temperature: Hydrodynamic velocity, Phys. Fluids textbf{33}, 043321 (2021).
The question about the existence of a structural glass transition in two dimensions is studied using mode coupling theory (MCT). We determine the explicit d-dependence of the memory functional of mode coupling for one-component systems. Applied to tw
We use event driven simulations to analyze glassy dynamics as a function of density and energy dissipation in a two-dimensional bidisperse granular fluid under stationary conditions. Clear signatures of a glass transition are identified, such as an i
I derive a mode-coupling theory for the velocity autocorrelation function, psi(t), in a fluid of randomly driven inelastic hard spheres far from equilibrium. With this, I confirm a conjecture from simulations that the velocity autocorrelation functio