ترغب بنشر مسار تعليمي؟ اضغط هنا

COSEBIs: Extracting the full E-/B-mode information from cosmic shear correlation functions

153   0   0.0 ( 0 )
 نشر من قبل Tim Eifler
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Peter Schneider




اسأل ChatGPT حول البحث

Cosmic shear is considered one of the most powerful methods for studying the properties of Dark Energy in the Universe. As a standard method, the two-point correlation functions $xi_pm(theta)$ of the cosmic shear field are used as statistical measures for the shear field. In order to separate the observed shear into E- and B-modes, the latter being most likely produced by remaining systematics in the data set and/or intrinsic alignment effects, several statistics have been defined before. Here we aim at a complete E-/B-mode decomposition of the cosmic shear information contained in the $xi_pm$ on a finite angular interval. We construct two sets of such E-/B-mode measures, namely Complete Orthogonal Sets of E-/B-mode Integrals (COSEBIs), characterized by weight functions between the $xi_pm$ and the COSEBIs which are polynomials in $theta$ or polynomials in $ln(theta)$, respectively. Considering the likelihood in cosmological parameter space, constructed from the COSEBIs, we study their information contents. We show that the information grows with the number of COSEBI modes taken into account, and that an asymptotic limit is reached which defines the maximum available information in the E-mode component of the $xi_pm$. We show that this limit is reached the earlier (i.e., for a smaller number of modes considered) the narrower the angular range is over which $xi_pm$ are measured, and it is reached much earlier for logarithmic weight functions. For example, for $xi_pm$ on the interval $1le thetale 400$, the asymptotic limit for the parameter pair $(Omega_m, sigma_8)$ is reached for $sim 25$ modes in the linear case, but already for 5 modes in the logarithmic case. The COSEBIs form a natural discrete set of quantities, which we suggest as method of choice in future cosmic shear likelihood analyses.



قيم البحث

اقرأ أيضاً

We present a re-analysis of the CFHTLenS weak gravitational lensing survey using Complete Orthogonal Sets of E/B-mode Integrals, known as COSEBIs. COSEBIs provide a complete set of functions to efficiently separate E-modes from B-modes and hence allo w for robust and stringent tests for systematic errors in the data. This analysis reveals significant B-modes on large angular scales that were not previously seen using the standard E/B decomposition analyses. We find that the significance of the B-modes is enhanced when the data is split by galaxy type and analysed in tomographic redshift bins. Adding tomographic bins to the analysis increases the number of COSEBIs modes, which results in a less accurate estimation of the covariance matrix from a set of simulations. We therefore also present the first compressed COSEBIs analysis of survey data, where the COSEBIs modes are optimally combined based on their sensitivity to cosmological parameters. In this tomographic CCOSEBIs analysis we find the B-modes to be consistent with zero when the full range of angular scales are considered.
Aims. We quantify the mixing of the measured cosmic-shear E- and B-modes caused by the lack of shear-correlation measurements on small and large scales, arising from a lack of close projected galaxy pairs and the finite field size, respectively. Me thods. We calculate the aperture-mass statistics <M_{ap, perp}^2> and the E-/B-mode shear-correlation functions xi_{E, B +/-} where small- and large-scale cutoffs are taken into account. We assess the deviation of the obtained E-mode to the true E-mode and the introduction of a spurious B-mode. Results. The measured aperture-mass dispersion is underestimated by more than 10% on scales smaller than 12 times the lower cutoff. For a precise measurement of the E- and B-modes at the percent level using a combination of xi_{E, B +} and xi_{E, B -}, a field as large as 7 (2.4) degrees is necessary for ground-based (space-based) observations.
We present measurements of $E$-mode polarization and temperature-$E$-mode correlation in the cosmic microwave background (CMB) using data from the first season of observations with SPTpol, the polarization-sensitive receiver currently installed on th e South Pole Telescope (SPT). The observations used in this work cover 100~sqdeg of sky with arcminute resolution at $150,$GHz. We report the $E$-mode angular auto-power spectrum ($EE$) and the temperature-$E$-mode angular cross-power spectrum ($TE$) over the multipole range $500 < ell leq5000$. These power spectra improve on previous measurements in the high-$ell$ (small-scale) regime. We fit the combination of the SPTpol power spectra, data from planck, and previous SPT measurements with a six-parameter LCDM cosmological model. We find that the best-fit parameters are consistent with previous results. The improvement in high-$ell$ sensitivity over previous measurements leads to a significant improvement in the limit on polarized point-source power: after masking sources brighter than 50,mJy in unpolarized flux at 150,GHz, we find a 95% confidence upper limit on unclustered point-source power in the $EE$ spectrum of $D_ell = ell (ell+1) C_ell / 2 pi < 0.40 mu{mbox{K}}^2$ at $ell=3000$, indicating that future $EE$ measurements will not be limited by power from unclustered point sources in the multipole range $ell < 3600$, and possibly much higher in $ell.$
We present measurements of cosmic shear two-point correlation functions (TPCFs) from Hyper Suprime-Cam Subaru Strategic Program (HSC SSP) first-year data, and derived cosmological constraints based on a blind analysis. The HSC first-year shape catalo g is divided into four tomographic redshift bins ranging from $z=0.3$ to 1.5 with equal widths of $Delta z =0.3$. The unweighted galaxy number densities in each tomographic bin are 5.9, 5.9, 4.3, and 2.4 arcmin$^{-2}$ from lower to higher redshifts, respectively. We adopt the standard TPCF estimators, $xi_pm$, for our cosmological analysis, given that we find no evidence of the significant B-mode shear. The TPCFs are detected at high significance for all ten combinations of auto- and cross-tomographic bins over a wide angular range, yielding a total signal-to-noise ratio of 19 in the angular ranges adopted in the cosmological analysis, $7<theta<56$ for $xi_+$ and $28<theta<178$ for $xi_-$. We perform the standard Bayesian likelihood analysis for cosmological inference from the measured cosmic shear TPCFs, including contributions from intrinsic alignment of galaxies as well as systematic effects from PSF model errors, shear calibration uncertainty, and source redshift distribution errors. We adopt a covariance matrix derived from realistic mock catalogs constructed from full-sky gravitational lensing simulations that fully account for survey geometry and measurement noise. For a flat $Lambda$ cold dark matter model, we find $S_8 equiv sigma_8sqrt{Omega_m/0.3}=0.804_{-0.029}^{+0.032}$, and $Omega_m=0.346_{-0.100}^{+0.052}$. We carefully check the robustness of the cosmological results against astrophysical modeling uncertainties and systematic uncertainties in measurements, and find that none of them has a significant impact on the cosmological constraints.
Aims. One of the main probes for systematic errors in the cosmic shear signal are the division of the shear field into E- and B-mode shear, where gravitational lensing only produces the former. As shown in a recent note, all currently used E-/B-mode separation methods for the shear correlation functions xi_pm require them to be measured to arbitrarily small and/or large separations which is of course not feasible in practice. Methods. We derive second-order shear statistics which provide a clean separation into E- and B-modes from measurements of xi_pm(theta) over a finite interval only. We call these new statistics the circle and ring statistics, respectively; the latter is obtained by an integral over the former. The mathematical properties of these new shear statistics are obtained, as well as specific expressions for applying them to observed data. Results. It is shown that an E-/B-mode separation can be performed on measurements of xi_pm over a finite interval in angular separation, using the ring statistics. We furthermore generalize this result to derive the most general class of second-order shear statistics which provide a separation of E- and B-mode shear on a given angular interval theta_min <= theta <= theta_max. Our results will be of practical use particularly for future cosmic shear surveys where highly precise measurements of the shear will become available and where control of systematics will be mandatory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا