ترغب بنشر مسار تعليمي؟ اضغط هنا

Origin of Large Dielectric Constant with Large Remnant Polarization and Evidence of Magnetoelectric Coupling in Multiferroic La modified BiFeO3-PbTiO3 Solid Solution

69   0   0.0 ( 0 )
 نشر من قبل Dr. Sanjay Mishra Kumar
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The presence of superlattice reflections and detailed analyses of the powder neutron and x-ray diffraction data reveal that La rich (BF$_{0.50}$-LF$_{0.50}$)$_{0.50}$-(PT)$_{0.50}$ (BF-LF-PT) has ferroelectric rhombohedral crystal structure with space group textit{$R3c$} at ambient conditions. The temperature dependence of lattice parameters, tilt angle, calculated polarization $(P_{s})$, volume, and integrated intensity of superlattice and magnetic reflections show an anomaly around 170 K. Impedance spectroscopy, dielectric and ac conductivity measurements were performed in temperature range $473K leq T leq 573K$ to probe the origin of large remnant polarization and frequency dependent broad transitions with large dielectric constant near $T_c^{FE}$. Results of impedance spectroscopy measurements clearly show contributions of both grain and grain boundaries throughout the frequency range ($10^{3}$ Hz$leq fleq 10^{7} $ Hz). It could be concluded that the grain boundaries are more resistive and capacitive as compared to the grains, resulting in inhomogeneities in the sample causing broad frequency dependent dielectric anomalies. Enhancement in dielectric constant and remnant polarization values are possibly due to space charge polarization caused by piling of charges at the interface of grains and grain boundaries. The imaginary parts of dielectric constant ($epsilon^{primeprime}$) Vs frequency data were fitted using Maxwell-Wagner model at $T_c^{FE}(sim 523$K) and model fits very well with the data up to $10^{5}$ Hz. Magnetodielectric measurements prove that the sample starts exhibiting magnetoelectric coupling at $sim 170$ K, which is also validated by neutron diffraction data.

قيم البحث

اقرأ أيضاً

In-plane temperature dependent dielectric behavior of BiFeO3 (BFO) as-grown thin films show diffuse but prominent phase transitions near 450 (+/-10) K and 550 K with dielectric loss temperature dependences that suggest skin layer effects. The 450 K a nomalies are near the transition first reported by Polomska et al. [Phys. Stat. Sol. 23, 567 (1974)]. The 550 K anomalies coincide with the surface phase transition recently reported [Xavi et al. PRL 106, 236101 (2011)]. In addition, anomalies are found at low temperatures: After several experimental cycles the dielectric loss shows a clear relaxor-like phase transition near what was previously suggested to be a spin reorientation transition (SRT) temperature (~ 201 K) for frequencies 1 kHz < f < 1MHz which follow a nonlinear Vogel-Fulcher (V-F) relation; an additional sharp anomaly is observed near ~180 K at frequencies below 1 kHz. As emphasized recently by Cowley et al. [Adv. Phys. 60, 229 (2011)], skin effects are expected for all relaxor ferroelectrics. Using the interdigital electrodes, experimental data and a theoretical model for in-plane longitudinal and transverse direct magnetoelectric (ME) coefficient are presented.
Magnetic, dielectric and calorimetric studies on 0.9BiFeO3-0.1BaTiO3 indicate strong magnetoelectric coupling. XRD studies reveal a very remarkable change in the rhombohedral distortion angle and a significant shift in the atomic positions at the mag netic Tc due to an isostructural phase transition. The calculated polarization using Rietveld refined atomic positions scales linearly with magnetization. Our results provide the first unambiguous evidence for magnetoelectric coupling of intrinsic multiferroic origin in a BiFeO3 based system.
Complex oxides with tunable structures have many fascinating properties, though high-quality complex oxide epitaxy with precisely controlled composition is still out of reach. Here we have successfully developed solution-based single crystalline epit axy for multiferroic (1-x)BiTi(1-y)/2FeyMg(1-y)/2O3-(x)CaTiO3 (BTFM-CTO) solid solution in large area, confirming its ferroelectricity at atomic-scale with a spontaneous polarization of 79~89uC/cm2. Careful compositional tuning leads to a bulk magnetization of ~0.07uB/Fe at room temperature, enabling magnetically induced polarization switching exhibiting a large magnetoelectric coefficient of 2.7-3.0X10-7s/m. This work demonstrates the great potential of solution processing in large-scale complex oxide epitaxy and establishes novel room-temperature magnetoelectric coupling in epitaxial BTFM-CTO film, making it possible to explore a much wider space of composition, phase, and structure that can be easily scaled up for industrial applications.
The control of optical fields is usually achieved through the electro-optic or acousto-optic effect in single-crystal ferroelectric or polar compounds such as LiNbO3 or quartz. In recent years, tremendous progress has been made in ferroelectric oxide thin film technology - a field which is now a strong driving force in areas such as electronics, spintronics and photovoltaics. Here, we apply epitaxial strain engineering to tune the optical response of BiFeO3 thin films, and find a very large variation of the optical index with strain, corresponding to an effective elasto-optic coefficient larger than that of quartz. We observe a concomitant strain-driven variation in light absorption - reminiscent of piezochromism - which we show can be manipulated by an electric field. This constitutes an electrochromic effect that is reversible, remanent and not driven by defects. These findings broaden the potential of multiferroics towards photonics and thin film acousto-optic devices, and suggest exciting device opportunities arising from the coupling of ferroic, piezoelectric and optical responses.
We report observation of magneto-electric and magneto-dielectric couplings in ceramic Co3TeO6. Temperature dependent DC magnetization and dielectric constant measurements together indicate coupling between magnetic order and electronic polarization. Strong anomaly in dielectric constant at ~ 18K in zero magnetic field indicates presence of spontaneous polarization. Observations like weak ferromagnetic order at lower temperature, field and temperature dependences of the ferroelectric transition provide experimental verification of the recent theoretical proposal by P. Toledano et al., Phys. Rev. B 85, 214439 (2012). We provide direct evidence of spin-phonon coupling as possible origin of magnetic order.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا