ﻻ يوجد ملخص باللغة العربية
The presence of superlattice reflections and detailed analyses of the powder neutron and x-ray diffraction data reveal that La rich (BF$_{0.50}$-LF$_{0.50}$)$_{0.50}$-(PT)$_{0.50}$ (BF-LF-PT) has ferroelectric rhombohedral crystal structure with space group textit{$R3c$} at ambient conditions. The temperature dependence of lattice parameters, tilt angle, calculated polarization $(P_{s})$, volume, and integrated intensity of superlattice and magnetic reflections show an anomaly around 170 K. Impedance spectroscopy, dielectric and ac conductivity measurements were performed in temperature range $473K leq T leq 573K$ to probe the origin of large remnant polarization and frequency dependent broad transitions with large dielectric constant near $T_c^{FE}$. Results of impedance spectroscopy measurements clearly show contributions of both grain and grain boundaries throughout the frequency range ($10^{3}$ Hz$leq fleq 10^{7} $ Hz). It could be concluded that the grain boundaries are more resistive and capacitive as compared to the grains, resulting in inhomogeneities in the sample causing broad frequency dependent dielectric anomalies. Enhancement in dielectric constant and remnant polarization values are possibly due to space charge polarization caused by piling of charges at the interface of grains and grain boundaries. The imaginary parts of dielectric constant ($epsilon^{primeprime}$) Vs frequency data were fitted using Maxwell-Wagner model at $T_c^{FE}(sim 523$K) and model fits very well with the data up to $10^{5}$ Hz. Magnetodielectric measurements prove that the sample starts exhibiting magnetoelectric coupling at $sim 170$ K, which is also validated by neutron diffraction data.
In-plane temperature dependent dielectric behavior of BiFeO3 (BFO) as-grown thin films show diffuse but prominent phase transitions near 450 (+/-10) K and 550 K with dielectric loss temperature dependences that suggest skin layer effects. The 450 K a
Magnetic, dielectric and calorimetric studies on 0.9BiFeO3-0.1BaTiO3 indicate strong magnetoelectric coupling. XRD studies reveal a very remarkable change in the rhombohedral distortion angle and a significant shift in the atomic positions at the mag
Complex oxides with tunable structures have many fascinating properties, though high-quality complex oxide epitaxy with precisely controlled composition is still out of reach. Here we have successfully developed solution-based single crystalline epit
The control of optical fields is usually achieved through the electro-optic or acousto-optic effect in single-crystal ferroelectric or polar compounds such as LiNbO3 or quartz. In recent years, tremendous progress has been made in ferroelectric oxide
We report observation of magneto-electric and magneto-dielectric couplings in ceramic Co3TeO6. Temperature dependent DC magnetization and dielectric constant measurements together indicate coupling between magnetic order and electronic polarization.