ترغب بنشر مسار تعليمي؟ اضغط هنا

Ground states and dynamics of population-imbalanced Fermi condensates in one dimension

107   0   0.0 ( 0 )
 نشر من قبل Masaki Tezuka
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

By using the numerically exact density-matrix renormalization group (DMRG) approach, we investigate the ground states of harmonically trapped one-dimensional (1D) fermions with population imbalance and find that the Larkin-Ovchinnikov (LO) state, which is a condensed state of fermion pairs with nonzero center-of-mass momentum, is realized for a wide range of parameters. The phase diagram comprising the two phases of i) an LO state at the trap center and a balanced condensate at the periphery and ii) an LO state at the trap center and a pure majority component at the periphery, is obtained. The reduced two-body density matrix indicates that most of the minority atoms contribute to the LO-type quasi-condensate. With the time-dependent DMRG, we also investigate the real-time dynamics of a system of 1D fermions in response to a spin-flip excitation.



قيم البحث

اقرأ أيضاً

We elucidate universal many-body properties of a one-dimensional, two-component ultracold Fermi gas near the $p$-wave Feshbach resonance. The low-energy scattering in this system can be characterized by two parameters, that is, $p$-wave scattering le ngth and effective range. At the unitarity limit where the $p$-wave scattering length diverges and the effective range is reduced to zero without conflicting with the causality bound, the system obeys universal thermodynamics as observed in a unitary Fermi gas with contact $s$-wave interaction in three dimensions. It is in contrast to a Fermi gas with the $p$-wave resonance in three dimensions in which the effective range is inevitably finite. We present the universal equation of state in this unitary $p$-wave Fermi gas within the many-body $T$-matrix approach as well as the virial expansion method. Moreover, we examine the single-particle spectral function in the high-density regime where the virial expansion is no longer valid. On the basis of the Hartree-like self-energy shift at the divergent scattering length, we conjecture that the equivalence of the Bertsch parameter across spatial dimensions holds even for a one-dimensional unitary $p$-wave Fermi gas.
We present a systematic investigation of attractive binary mixtures in presence of both spin- and mass-imbalance in one dimensional setups described by the Hubbard model. After discussing typical cold atomic experimental realizations and the relation between microscopic and effective parameters, we study several many-body features of trapped Fermi-Fermi and Bose-Bose mixtures such as density profiles, momentum distributions and correlation functions by means of numerical density-matrix-renormalization-group and Quantum Monte Carlo simulations. In particular, we focus on the stability of Fulde-Ferrell-Larkin-Ovchinnikov, dimer and trimer fluids in inhomogeneous situations, as typically realized in cold gas experiments due to the harmonic confinement. We finally consider possible experimental signatures of these phases both in the presence of a finite polarization and of a finite temperature.
We calculate the density profiles of a trapped spin-imbalanced Fermi gas with attractive interactions in a one-dimensional optical lattice, using both the local density approximation (LDA) and density matrix renormalization group (DMRG) simulations. Based on the exact equation of state obtained by Bethe ansatz, LDA predicts that the gas phase-separates into shells with a partially polarized core and fully paired wings, where the latter occurs below a critical spin polarization. This behavior is also seen in numerically exact DMRG calculations at sufficiently large particle numbers. Unlike the continuum case, we show that the critical polarization is a non monotonic function of the interaction strength and vanishes in the limit of large interactions.
We theoretically study dilute superfluidity of spin-1 bosons with antiferromagnetic interactions and synthetic spin-orbit coupling (SOC) in a one-dimensional lattice. Employing a combination of density matrix renormalization group and quantum field t heoretical techniques we demonstrate the appearance of a robust superfluid spin-liquid phase in which the spin-sector of this spinor Bose-Einstein condensate remains quantum disordered even after introducing quadratic Zeeman and helical magnetic fields. Despite remaining disordered, the presence of these symmetry breaking fields lifts the perfect spin-charge separation and thus the nematic correlators obey power-law behavior. We demonstrate that, at strong coupling, the SOC induces a charge density wave state that is not accessible in the presence of linear and quadratic Zeeman fields alone. In addition, the SOC induces oscillations in the spin and nematic expectation values as well as the bosonic Greens function. These non-trivial effects of a SOC are suppressed under the application of a large quadratic Zeeman field. We discuss how our results could be observed in experiments on ultracold gases of $^{23}$Na in an optical lattice.
107 - Yajiang Hao 2016
We investigate the ground state properties of anti-ferromagnetic spin-1 Bose gases in one dimensional harmonic potential from the weak repulsion regime to the strong repulsion regime. By diagonalizing the Hamiltonian in the Hilbert space composed of the lowest eigenstates of single particle and spin components, the ground state wavefunction and therefore the density distributions, magnetization distribution, one body density matrix, and momentum distribution for each components are obtained. It is shown that the spinor Bose gases of different magnetization exhibit the same total density profiles in the full interaction regime, which evolve from the single peak structure embodying the properties of Bose gases to the fermionized shell structure of spin-polarized fermions. But each components display different density profiles, and magnetic domains emerge in the strong interaction limit for $M=0.25$. In the strong interaction limit, one body density matrix and the momentum distributions exhibit the same behaviours as those of spin-polarized fermions. The fermionization of momentum distribution takes place, in contrast to the $delta$-function-like distribution of single component Bose gases in the full interaction region.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا